Computing Walrasian
Equilibrium

Renato Paes Leme Sam Wong
(Google) (Berkeley)

supplies:
flour,
milk,
vegetables,
medicine,

paper,

demand:

bakeries,

hospita
househo

S,

ds,

schools,

supplies:
flour,
milk,
vegetables,
medicine,

paper,

Task: Allocate supplies

efficiently to

satisfy the demands

demand:

bakeries,

hospita
househo

S,

ds,

schools,

supplies:

flour, demand:
milk. Task: Allocate supplies " bakeries,
vegetables, efficiently to hospitals,
medicine, il satisfy the demands g _ households,
paper, = schools,

,

Invisible Hand
of the market

Theory of Market Equilibrium

e Adam Smith: "Wealth of the
Nations” (1776): invisible hand

e Leon Walras: “Elements of Pure
Economics” (1874): mathematical
theory of market equilibrium

e Arrow-Debreu (1950's): general
equilibrium theory

o Kelso-Crawford (1982): discrete anc
combinatorial theory of market equilibr.

Market equilibrium

n goods 6 ’ﬂ ‘ .a
m buyers

Market equilibrium

n goods 6 'ﬂ

m buyers

U1

e Valuations v : 2% — R

Market equilibrium

P1 P2 P3 P4 P5

n goods 6 'ﬂ

m buyers

U1

e Valuations v : 2% — R

Pe6

Market equilibrium

P1 P2 P3 Pa P5 D6

n goods 6 'ﬂ

m buyers

U1

e Valuations v; : 2% — R
o Demands D(v;,p) = argmaxgc n|vi(S) — D, o5 Pil

Market equilibrium

P1 P2 P3 Pa P5 D6

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmangN[vi(S) — D ics Dil

Market equilibrium

P1 P2 P3 Pa P5 D6

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmangN[vi(S) — D ics Dil

Market equilibrium

P1 P2 P3 Pa P5 D6

n goods

m buyers

e Valuations v; : 2"V — R
e Demands D(v;,p) = argmangN[vi(S) — D ics Dil

Market equilibrium

P1 P2 P3 Pa P5 D6

n goods

m buyers

e Valuations v; : 2% — R
e Demands D(v;,p) = argmaXSgN[vi(S) — D ics Dil

Market equilibrium

o Market equilibrium: prices p € R"s.t. S; € D(v;, p)
i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare

Zi v;(S;) is maximized.

(proof: LP duality)

How do markets converge to equilibrium prices 7

How to compute a Walrasian equilibrium 7

How to access the input

Microscopic Macroscopic Telescopic

How to access the input

Microscopic Macroscopic Telescopic

Value oracle:

given | and S:
query v; (.9).

How to access the input

Microscopic Macroscopic Telescopic
Value oracle: Demand oracle:
given | and S: given | and p:

query v (S) query S € D(v;,p)

How to access the input

Microscopic I\/Iacroc0pic Telescopic
Value oracle: Demand oracle: Aggregate Demand:
given i and S: given i and p: given p, query.

query v; (). query S € D(vi,p) >, 55 € D(vi,p)

Algorithms for computing equilibria

(general case)

Algorithm

tatonnement (trial-and-error)
[Walras, Kelso-Crawford, ...]

Oracle Access

Running time

Walrasian tatonnement

P1 P2 P3 P4 P5 D6

n goods 6 'ﬂ ‘ 'a
m buyers

Walrasian tatonnement

N
1 P2
n goods 6 ‘

P3 Pa P5 Pe

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

Walrasian tatonnement

P5

P4

&

Pe6

n goods

m buyers

Walrasian tatonnement

pa—1

&

P5 Pe

n goods

m buyers

Walrasian tatonnement

P1 po+1 PpP3+1 pa—1 D5 D6

n goods 6 'ﬂ ‘ 'a
m buyers

Walrasian tatonnement

P1 po+1 PpP3+1 pa—1 D5 D6

n goods 6 'ﬂ ‘ 'a
m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Walrasian tatonnement

n goods

m buyers

Gradient Descent Interpretation

o [Kelso-Crawford] analyzes it and shows convergence
under a condition called gross substitutes.

e pseudo poly algorithm

Gradient Descent Interpretation

o [Kelso-Crawford] analyzes it and shows convergence
under a condition called gross substitutes.

e pseudo poly algorithm
e [Ausubel] defined the potential:

f(p) = >2; maxg[v;(S) — p(S)] + p([n])
such that gradient descent is exactly tatonnement:

0;f(p) =1 — [total demand for j|

o If equilibrium exists then equil prices = argminf(p)

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]
Linear programming demand + value

[Nisan-Segall oracle poly time

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Linear programming demand + value vt

[Nisan-Segall oracle POLy time
ly ti

this paper aggregate demand _ POy HmME

O(n2 -T'Ap + n5)

From LP to convex optimization

e Nisan and Segal LP:

min Zz u; + p([n))
U, > U@(S) —p(S),Vi, S

From LP to convex optimization

e Nisan and Segal LP: e demand oracle finds
min) . u; + p([n)) separating constraint

w; > v;(S) — p(9),Vi, s * value oracle to add the
hyperplane

From LP to convex optimization

e Nisan and Segal LP: e demand oracle finds
min > . u; + p([n]) separating constraint
w; > v;(S) — p(9),Vi, s * value oracle to add the

hyperplane

e l|dea: using cutting plane method to minimize
f(p) = > ;[maxg vi(S) — p(S)] + p([n])

From LP to convex optimization

e Nisan and Segal LP: e demand oracle finds
min > . u; + p([n]) separating constraint
w; > v;(S) — p(9),Vi, s * value oracle to add the

hyperplane

e l|dea: using cutting plane method to minimize

f(p) = >_;[maxg v;(S) — p(S5)] + p([n))

e Two issues with black box application:
o Evaluate f: ellipsoid and cutting plane need f(p),0f(p)

e Approximation: give only approximate solutions

From LP to convex optimization

e Optimizing only using the gradient
We adapt the cutting plane algorithm of
| ee-Sidford-Wong'15 to optimize f using only 0f(p)

o Obtaining exact solutions
e Exact solution is only known for LPs [Khachiyan]
e idea: explore the connection of this program and LP
e But we have restricted access to constraints
(only via aggregate demand oracle)
e Only a restricted perturbation is enough.

Gross substitutes case

Gross substitutes case

necessary and
“sufficient” condition ~ _.-==""==-(.
for tatonnement to ,+* \\
converge '

“increase in the * gross substitutes

price for one \ [Kelso—Crawford] :
good doesn't]

decrease demand
for other good.”

~

Gross substitutes case

necessary and
“sufficient” condition _.-==""==~i_. _Le=mTmeea
o’ L 4 2 3

for tatonnement to .- N . .

4
24
4
converge . ’ K .
’ ’

“Increase in the ." gross substitutes
price for one \ [Kelso—Crawford]

valuated matroids
[Dress-Wenzel]

1
1
1
1
]
I

1

good doesn't v ' .
’ ’ e ’
decrease demand R . .
1 ‘e o’ hES o’
for other good. .. et ... et L
---------------- generalization of

Grassman-Plucker relations,
when can v(S) — > ¢ p; be
optimized using Greedy algo

Gross substitutes case

necessary and
“sufficient” condition _.-==""==~i_. _Le=mTmeea

L4 LY 24

for tatonnement to .- N . <

4
24
4
converge . ’ K .
’ ’

“Increase in the ." gross substitutes
price for one \ [Kelso—Crawford]

valuated matroids
[Dress-Wenzel]

1
1
1
1
]
I

1

good doesn't v ' .
’ ’ e ’
decrease demand R . .
1 ‘e o’ hES o’
for other good. .. et ... et L
---------------- generalization of

Grassman-Plucker relations,
when can v(S) — > ¢ p; be
optimized using Greedy algo
(if v(S5) € {0, —o0} those
are matroids).

Gross substitutes case

necessary and

“sufficient” condition ~ _.--=""77=- . Pl D .
for tatonnement to -’ N, o0 "\,
’ 2N ’ 2N
converge /!) / .
' ' ' '
| ! |

valuated matroids
[Dress-Wenzel]

“Increase in the ." gross substitutes
price for one \ [Kelso Crawford]

1
1
1
1
]
I
1

| | |)
good doesn't '; S 5
decrease demand R . .
1 hES o’ hES o’
for other good. .. et ... et L
________ JPELLLL LTI ~~--.---"" generalization of
R "\, Grassman-Plucker relations,
’ .
,' . when can v(S) — > ¢ p; be

dlscrete concavity “. optimized using Greedy algo

/\ . [Murota-Shioura] (if v(5) € 10, —oc} those
g Y N are matroids).

local certificate of *- .

~ -
-~ -
.-----

global optimality

Gross substitutes case

necessary and
“sufficient” condition

for tatonnement to
converge

“increase in the |
price for one |
good doesn't

decrease demand

for other good.” , .
& # generalization of

7 Grassman-Plucker relations,
when can v(S) — > o p; be
optimized using Greedy algo
(if v(S5) € {0, —o0} those
are matroids).

.
‘ﬂ
-
‘ﬂ
|

local certificate of
global optimality

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos strong poly time
value oracle -
[Murota] O(mn? - Ty)

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos strong poly time
value oracle -
[Murota] O(mn? - Ty)

this paper aggregate demand é(n -Tap + n3)

Algorithms for computing equilibria

(gross substitutes case)

Algorithm

tatonnement / gradient descent
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos
[Murotal]

this paper

this paper

Oracle Access

aggregate demand

value oracle

aggregate demand

value oracle

Running time

pseudo poly

strong poly time
O(mn® - Ty)

O(n - Tap + n3)

~

O((mn +n?®) - Ty)

Improving the algorithm for gross substitutes

o Better rounding using structure of gross substitutes

gets us to O(n - Tap + n®)
e plugging Tap = O(mn*-Ty) we get O(mn? - Ty)

e Regularization: gradients are expensive to compute.
e it takes O(n”-Ty) to run Greedy for each buyer.
e gradients are cheap near the optimal
e re-use computation from one step to the next
e we only need precise gradients near the optimum

f(p) = 3 [maxg v;(S) — p(S)+e|S[] + p([n])—en

Improving the algorithm for gross substitutes

e Regularized objective:

f(p) = > _|maxg v;(S) — p(S)+e€|S|| + p([n])—en

e Same optimal value

e Very accurate near the optimal value, directionally
correct for other values.

e Takes only O(n?) time to compute with O(mn)
pre-processing.

Conclusion

e Market equilibrium can
be computed:
e only very aggregated
information
e in O~(n) calls to this
oracle.

e Questions to think about:

e Markets that change over time 7 New items, new
buyers, ... How to update market equilibrium.
o Strongly poly time algorithms.

