
Computing Walrasian
Equilibrium

Renato Paes Leme Sam Wong
 (Google) (Berkeley)

supplies:
flour,
milk,

vegetables,
medicine,
paper,

…

demand:
bakeries,
hospitals,

households,
schools,

…

supplies:
flour,
milk,

vegetables,
medicine,
paper,

…

demand:
bakeries,
hospitals,

households,
schools,

…

Task: Allocate supplies
efficiently to

satisfy the demands
of the city.

supplies:
flour,
milk,

vegetables,
medicine,
paper,

…

demand:
bakeries,
hospitals,

households,
schools,

…

Task: Allocate supplies
efficiently to

satisfy the demands
of the city.

Invisible Hand
of the market

• Adam Smith: “Wealth of the
Nations” (1776): invisible hand 

• Leon Walras: “Elements of Pure
Economics” (1874): mathematical 
theory of market equilibrium 

• Arrow-Debreu (1950’s): general
equilibrium theory 

• Kelso-Crawford (1982): discrete and
combinatorial theory of market equilibr.

Theory of Market Equilibrium

Market equilibrium

n goods

m buyers

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

v1 v2 v3 v4

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p)

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)

; 2 D(v3, p)

• Valuations

Market equilibrium

n goods

m buyers

vi : 2N ! R

p1 p2 p3 p4 p5 p6

v1 v2 v3 v4

D(vi, p) = argmaxS✓N [vi(S)�
P

i2S pi]• Demands

S1 2 D(v1, p) S2 2 D(v2, p)
S4 2 D(v4, p)

; 2 D(v3, p)

• Market equilibrium: prices s.t.  
i.e. each good is demanded by exactly one buyer.

Market equilibrium
p 2 Rn Si 2 D(vi, p)

First Welfare Theorem: in equilibrium the welfare 
 is maximized.

P
i vi(Si)

(proof: LP duality)

How do markets converge to equilibrium prices ?

How to compute a Walrasian equilibrium ?

How to access the input

Microscopic Macroscopic Telescopic

How to access the input

Microscopic Macroscopic Telescopic

Value oracle:
given i and S: 
query .vi(S)

How to access the input

Microscopic Macroscopic Telescopic

Value oracle:
given i and S: 
query .vi(S)

Demand oracle:
given i and p:  

query .S 2 D(vi, p)

How to access the input

Microscopic Macroscopic Telescopic

Value oracle:
given i and S: 
query .vi(S)

Demand oracle:
given i and p:  

query .S 2 D(vi, p)

Aggregate Demand:
given p, query.

P
i Si;Si 2 D(vi, p)

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement (trial-and-error)
[Walras, Kelso-Crawford, …]

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1 +1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1 +1

Walrasian tatonnement

n goods

m buyers
v1 v2 v3 v4

p1 p2 p3 p4 p5 p6+1 +1 �1 +1

Gradient Descent Interpretation
• [Kelso-Crawford] analyzes it and shows convergence

under a condition called gross substitutes.
• pseudo poly algorithm

• [Ausubel] defined the potential: 
 
 
such that gradient descent is exactly tatonnement:  
 

• If equilibrium exists then equil prices =

Gradient Descent Interpretation

argminf(p)

@jf(p) = 1� [total demand for j]

f(p) =
P

i maxS [vi(S)� p(S)] + p([n])

• [Kelso-Crawford] analyzes it and shows convergence
under a condition called gross substitutes.
• pseudo poly algorithm

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Linear programming
[Nisan-Segal]

demand + value 
oracle

poly time

Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Linear programming
[Nisan-Segal]

demand + value 
oracle

poly time

this paper
poly timeaggregate demand

Õ(n2 · TAD + n5)

• Nisan and Segal LP:

From LP to convex optimization

min
P

i ui + p([n])

ui � vi(S)� p(S), 8i, S

• Nisan and Segal LP:

From LP to convex optimization

min
P

i ui + p([n])

ui � vi(S)� p(S), 8i, S

• demand oracle finds
separating constraint

• value oracle to add the
hyperplane

• Nisan and Segal LP:

From LP to convex optimization

min
P

i ui + p([n])

ui � vi(S)� p(S), 8i, S

• demand oracle finds
separating constraint

• value oracle to add the
hyperplane

• Idea: using cutting plane method to minimize
f(p) =

P
i[maxS vi(S)� p(S)] + p([n])

• Nisan and Segal LP:

From LP to convex optimization

min
P

i ui + p([n])

ui � vi(S)� p(S), 8i, S

• demand oracle finds
separating constraint

• value oracle to add the
hyperplane

• Idea: using cutting plane method to minimize
f(p) =

P
i[maxS vi(S)� p(S)] + p([n])

• Two issues with black box application:
• Evaluate f: ellipsoid and cutting plane need
• Approximation: give only approximate solutions

f(p), @f(p)

• Optimizing only using the gradient 
We adapt the cutting plane algorithm of 
Lee-Sidford-Wong’15 to optimize f using only 

• Obtaining exact solutions
• Exact solution is only known for LPs [Khachiyan]
• idea: explore the connection of this program and LP
• But we have restricted access to constraints 

(only via aggregate demand oracle)
• Only a restricted perturbation is enough.

From LP to convex optimization

@f(p)

Gross substitutes case

Gross substitutes case

gross substitutes
[Kelso-Crawford]

necessary and
“sufficient” condition
for tatonnement to

converge

“increase in the
price for one
good doesn’t

decrease demand
for other good.”

Gross substitutes case

gross substitutes
[Kelso-Crawford]

necessary and
“sufficient” condition
for tatonnement to

converge

valuated matroids
[Dress-Wenzel]

generalization of
Grassman-Plucker relations,
when can be
optimized using Greedy algo

v(S)�
P

S pj

“increase in the
price for one
good doesn’t

decrease demand
for other good.”

Gross substitutes case

gross substitutes
[Kelso-Crawford]

necessary and
“sufficient” condition
for tatonnement to

converge

valuated matroids
[Dress-Wenzel]

generalization of
Grassman-Plucker relations,
when can be
optimized using Greedy algo

v(S)�
P

S pj

v(S) 2 {0,�1}(if those
are matroids).

“increase in the
price for one
good doesn’t

decrease demand
for other good.”

Gross substitutes case

gross substitutes
[Kelso-Crawford]

necessary and
“sufficient” condition
for tatonnement to

converge

valuated matroids
[Dress-Wenzel]

generalization of
Grassman-Plucker relations,
when can be
optimized using Greedy algo

v(S)�
P

S pj

v(S) 2 {0,�1}(if those
are matroids).

discrete concavity
[Murota-Shioura]

local certificate of
global optimality

“increase in the
price for one
good doesn’t

decrease demand
for other good.”

Gross substitutes case

gross substitutes
[Kelso-Crawford]

necessary and
“sufficient” condition
for tatonnement to

converge

valuated matroids
[Dress-Wenzel]

generalization of
Grassman-Plucker relations,
when can be
optimized using Greedy algo

v(S)�
P

S pj

v(S) 2 {0,�1}(if those
are matroids).

discrete concavity
[Murota-Shioura]

local certificate of
global optimality

Discrete Convex
Analysis

“increase in the
price for one
good doesn’t

decrease demand
for other good.”

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Combinatorial flow-based algos
[Murota]

value oracle strong poly time
Õ(mn3 · TV)

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Combinatorial flow-based algos
[Murota]

value oracle strong poly time
Õ(mn3 · TV)

this paper aggregate demand Õ(n · TAD + n3)

Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time
tatonnement / gradient descent

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Combinatorial flow-based algos
[Murota]

value oracle strong poly time
Õ(mn3 · TV)

this paper aggregate demand Õ(n · TAD + n3)

this paper value oracle Õ((mn+ n3) · TV)

Algorithms for computing equilibria
(gross substitutes case)

Improving the algorithm for gross substitutes

• Better rounding using structure of gross substitutes 
gets us to
• plugging we get

• Regularization: gradients are expensive to compute.
• it takes to run Greedy for each buyer.
• gradients are cheap near the optimal
• re-use computation from one step to the next
• we only need precise gradients near the optimum

Õ(mn3 · TV)

O(n2 · TV)

ˆf(p) =
P

i[maxS vi(S)� p(S)+✏|S|] + p([n])�✏n

Õ(n · TAD + n3)
TAD = O(mn2 · TV)

Improving the algorithm for gross substitutes

• Regularized objective: 

• Same optimal value
• Very accurate near the optimal value, directionally 

correct for other values.
• Takes only time to compute with  

pre-processing.
O(n2) O(mn)

ˆf(p) =
P

i[maxS vi(S)� p(S)+✏|S|] + p([n])�✏n

• Market equilibrium can
be computed:
• only very aggregated

information
• in calls to this

oracle.

Conclusion

Õ(n)

• Questions to think about:
• Markets that change over time ? New items, new

buyers, … How to update market equilibrium.
• Strongly poly time algorithms.

