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Theory of Market Equilibrium

e Adam Smith: "Wealth of the
Nations” (1776): invisible hand

e Leon Walras: “Elements of Pure
Economics” (1874): mathematical
theory of market equilibrium

e Arrow-Debreu (1950's): general
equilibrium theory

o Kelso-Crawford (1982): discrete anc
combinatorial theory of market equilibr.
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Market equilibrium

o Market equilibrium: prices p € R"s.t. S; € D(v;, p)
i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare

Zi v;(S;) is maximized.

(proof: LP duality)

How do markets converge to equilibrium prices 7

How to compute a Walrasian equilibrium 7
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How to access the input

Microscopic I\/Iacroc0pic Telescopic
Value oracle: Demand oracle: Aggregate Demand:
given i and S: given i and p: given p, query.

query v; (). query S € D(vi,p) >, 55 € D(vi,p)



Algorithms for computing equilibria

(general case)

Algorithm

tatonnement (trial-and-error)
[Walras, Kelso-Crawford, ...]

Oracle Access

Running time
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Gradient Descent Interpretation

o [Kelso-Crawford] analyzes it and shows convergence
under a condition called gross substitutes.

e pseudo poly algorithm
e [Ausubel] defined the potential:

f(p) = >2; maxg[v;(S) — p(S)] + p([n])
such that gradient descent is exactly tatonnement:

0;f(p) =1 — [total demand for j|

o If equilibrium exists then equil prices = argminf(p)



Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]




Algorithms for computing equilibria
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]
Linear programming demand + value

[Nisan-Segall oracle poly time
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Algorithm Oracle Access Running time
tatonnement / gradient descent aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]
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From LP to convex optimization

e Nisan and Segal LP: e demand oracle finds
min > . u; + p([n]) separating constraint
w; > v;(S) — p(9),Vi, s * value oracle to add the

hyperplane

e l|dea: using cutting plane method to minimize

f(p) = >_;[maxg v;(S) — p(S5)] + p([n))

e Two issues with black box application:
o Evaluate f: ellipsoid and cutting plane need f(p),0f(p)

e Approximation: give only approximate solutions




From LP to convex optimization

e Optimizing only using the gradient
We adapt the cutting plane algorithm of
| ee-Sidford-Wong'15 to optimize f using only 0f(p)

o Obtaining exact solutions
e Exact solution is only known for LPs [Khachiyan]
e idea: explore the connection of this program and LP
e But we have restricted access to constraints
(only via aggregate demand oracle)
e Only a restricted perturbation is enough.



Gross substitutes case



Gross substitutes case

necessary and
“sufficient” condition ~ _.-==""==-( .
for tatonnement to ,+* \\
converge '

“increase in the * gross substitutes

price for one \ [Kelso—Crawford] :
good doesn't ]

decrease demand
for other good.”

~
_____
------



Gross substitutes case

necessary and
“sufficient” condition  _.-==""==~i_. _Le=mTmeea
o’ L 4 2 3

for tatonnement to .- N . .

4
24
4
converge . ’ K .
’ ’

“Increase in the ." gross substitutes
price for one \ [Kelso—Crawford]

valuated matroids
[Dress-Wenzel]

1
1
1
1
]
I

1

good doesn't v ' .
’ ’ e ’
decrease demand R . .
1 ‘e o’ hES o’
for other good. .. et ... et L
---------------- generalization of

Grassman-Plucker relations,
when can v(S) — > ¢ p; be
optimized using Greedy algo



Gross substitutes case

necessary and
“sufficient” condition  _.-==""==~i_. _Le=mTmeea

L4 LY 24

for tatonnement to .- N . <

4
24
4
converge . ’ K .
’ ’

“Increase in the ." gross substitutes
price for one \ [Kelso—Crawford]

valuated matroids
[Dress-Wenzel]

1
1
1
1
]
I

1

good doesn't v ' .
’ ’ e ’
decrease demand R . .
1 ‘e o’ hES o’
for other good. .. et ... et L
---------------- generalization of

Grassman-Plucker relations,
when can v(S) — > ¢ p; be
optimized using Greedy algo
(if v(S5) € {0, —o0} those
are matroids).



Gross substitutes case

necessary and

“sufficient” condition ~ _.--=""77=- . Pl D .
for tatonnement to -’ N, o0 "\,
’ 2N ’ 2N
converge /! ) / .
' ' ' '
| ! |

valuated matroids
[Dress-Wenzel]

“Increase in the ." gross substitutes
price for one \ [Kelso Crawford]

1
1
1
1
]
I
1

| | | )
good doesn't '; S 5
decrease demand R . .
1 hES o’ hES o’
for other good. .. et ... et L
________ JPELLLL LTI ~~--.---"" generalization of
R "\, Grassman-Plucker relations,
’ .
,' . when can v(S) — > ¢ p; be

dlscrete concavity “. optimized using Greedy algo

/\ . [Murota-Shioura] (if v(5) € 10, —oc} those
g Y N are matroids).

local certificate of  *- .

~ -
-~ -
.-----

global optimality



Gross substitutes case

necessary and
“sufficient” condition

for tatonnement to
converge

“increase in the |
price for one |
good doesn't

decrease demand

for other good.” , .
& # generalization of

7 Grassman-Plucker relations,
when can v(S) — > o p; be
optimized using Greedy algo
(if v(S5) € {0, —o0} those
are matroids).

.
‘ﬂ
-
‘ﬂ
|

local certificate of
global optimality



Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]




Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos strong poly time
value oracle -
[Murota] O(mn? - Ty)




Algorithms for computing equilibria
(gross substitutes case)

Algorithm Oracle Access Running time

tatonnement / gradient descent

aggregate demand pseudo poly
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos strong poly time
value oracle -
[Murota] O(mn? - Ty)

this paper aggregate demand é(n -Tap + n3)




Algorithms for computing equilibria

(gross substitutes case)

Algorithm

tatonnement / gradient descent
[Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos
[Murotal]

this paper

this paper

Oracle Access

aggregate demand

value oracle

aggregate demand

value oracle

Running time

pseudo poly

strong poly time
O(mn® - Ty)

O(n - Tap + n3)

~

O((mn +n?®) - Ty)



Improving the algorithm for gross substitutes

o Better rounding using structure of gross substitutes

gets us to O(n - Tap + n®)
e plugging Tap = O(mn*-Ty) we get O(mn? - Ty)

e Regularization: gradients are expensive to compute.
e it takes O(n”-Ty) to run Greedy for each buyer.
e gradients are cheap near the optimal
e re-use computation from one step to the next
e we only need precise gradients near the optimum

f(p) = 3 [maxg v;(S) — p(S)+e|S[] + p([n])—en



Improving the algorithm for gross substitutes

e Regularized objective:

f(p) = > _|maxg v;(S) — p(S)+e€|S|| + p([n])—en

e Same optimal value

e Very accurate near the optimal value, directionally
correct for other values.

e Takes only O(n?) time to compute with O(mn)
pre-processing.



Conclusion

e Market equilibrium can
be computed:
e only very aggregated
information
e in O~(n) calls to this
oracle.

e Questions to think about:

e Markets that change over time 7 New items, new
buyers, ... How to update market equilibrium.
o Strongly poly time algorithms.



