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• Adam Smith: “Wealth of the 
Nations” (1776): invisible hand 

• Leon Walras: “Elements of Pure 
Economics” (1874): mathematical 
theory of market equilibrium 

• Arrow-Debreu (1950’s): general 
equilibrium theory 

• Kelso-Crawford (1982): discrete and 
combinatorial theory of market equilibr.

Theory of Market Equilibrium
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• Market equilibrium: prices           s.t.                   
i.e. each good is demanded by exactly one buyer.

Market equilibrium
p 2 Rn Si 2 D(vi, p)

First Welfare Theorem: in equilibrium the welfare 
                                          is maximized.

P
i vi(Si)

(proof: LP duality)

How do markets converge to equilibrium prices ? 

How to compute a Walrasian equilibrium ?
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How to access the input

Microscopic Macroscopic Telescopic

Value oracle: 
given i and S: 
query       .vi(S)

Demand oracle: 
given i and p:  

query             .S 2 D(vi, p)

Aggregate Demand: 
given p, query. 

P
i Si;Si 2 D(vi, p)



Algorithms for computing equilibria 
(general case)

Algorithm Oracle Access Running time
tatonnement (trial-and-error) 
[Walras, Kelso-Crawford, …]
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• [Ausubel] defined the potential: 
 
 
such that gradient descent is exactly tatonnement:  
 

• If equilibrium exists then equil prices = 

Gradient Descent Interpretation

argminf(p)

@jf(p) = 1� [total demand for j]

f(p) =
P

i maxS [vi(S)� p(S)] + p([n])

• [Kelso-Crawford] analyzes it and shows convergence 
under a condition called gross substitutes. 
• pseudo poly algorithm
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Algorithms for computing equilibria 
(general case)

Algorithm Oracle Access Running time
tatonnement / gradient descent 

[Walras, Kelso-Crawford, …]
aggregate demand pseudo poly

Linear programming 
[Nisan-Segal]

demand + value 
oracle

poly time

this paper
poly timeaggregate demand

Õ(n2 · TAD + n5)
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• Nisan and Segal LP:

From LP to convex optimization

min
P

i ui + p([n])

ui � vi(S)� p(S), 8i, S

• demand oracle finds 
separating constraint 

• value oracle to add the 
hyperplane

• Idea: using cutting plane method to minimize
f(p) =

P
i[maxS vi(S)� p(S)] + p([n])

• Two issues with black box application: 
• Evaluate f: ellipsoid and cutting plane need 
• Approximation: give only approximate solutions

f(p), @f(p)



• Optimizing only using the gradient 
We adapt the cutting plane algorithm of 
Lee-Sidford-Wong’15 to optimize f using only 

• Obtaining exact solutions 
• Exact solution is only known for LPs [Khachiyan] 
• idea: explore the connection of this program and LP 
• But we have restricted access to constraints 

(only via aggregate demand oracle) 
• Only a restricted perturbation is enough.

From LP to convex optimization

@f(p)
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Gross substitutes case

gross substitutes 
[Kelso-Crawford]

necessary and 
“sufficient” condition 
for tatonnement to 

converge

valuated matroids 
[Dress-Wenzel]

generalization of 
Grassman-Plucker relations, 
when can                   be 
optimized using Greedy algo

v(S)�
P

S pj

v(S) 2 {0,�1}(if                      those 
are matroids).

discrete concavity 
[Murota-Shioura]

local certificate of 
global optimality

Discrete Convex 
Analysis

“increase in the 
price for one 
good doesn’t 

decrease demand 
for other good.”
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aggregate demand pseudo poly

Combinatorial flow-based algos 
[Murota]

value oracle strong poly time
Õ(mn3 · TV )

this paper aggregate demand Õ(n · TAD + n3)

this paper value oracle Õ((mn+ n3) · TV )
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Improving the algorithm for gross substitutes

• Better rounding using structure of gross substitutes 
gets us to  
• plugging                             we get  

• Regularization: gradients are expensive to compute. 
• it takes                  to run Greedy for each buyer. 
• gradients are cheap near the optimal 
• re-use computation from one step to the next 
• we only need precise gradients near the optimum

Õ(mn3 · TV )

O(n2 · TV )

ˆf(p) =
P

i[maxS vi(S)� p(S)+✏|S|] + p([n])�✏n

Õ(n · TAD + n3)
TAD = O(mn2 · TV )



Improving the algorithm for gross substitutes

• Regularized objective: 

• Same optimal value 
• Very accurate near the optimal value, directionally 

correct for other values. 
• Takes only          time to compute with  

pre-processing.
O(n2) O(mn)

ˆf(p) =
P

i[maxS vi(S)� p(S)+✏|S|] + p([n])�✏n



• Market equilibrium can 
be computed: 
• only very aggregated 

information 
• in        calls to this 

oracle.

Conclusion

Õ(n)

• Questions to think about: 
• Markets that change over time ? New items, new 

buyers, … How to update market equilibrium. 
• Strongly poly time algorithms.


