Computing Walrasian Equilibrium

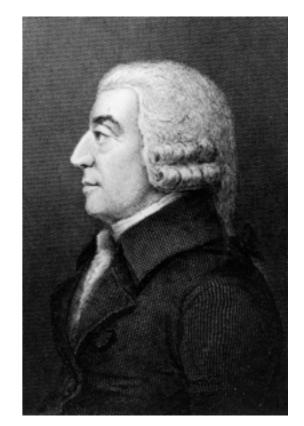
Renato Paes Leme (Google) Sam Wong (Berkeley) supplies: flour, milk, vegetables, medicine, paper,

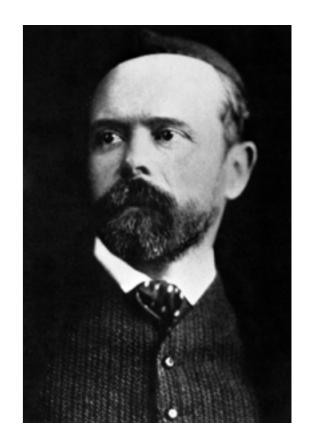
demand: bakeries, hospitals, households, schools, supplies: flour, milk, vegetables, medicine, paper,

demand: bakeries, hospitals, households, schools,

Theory of Market Equilibrium

- Adam Smith: "Wealth of the Nations" (1776): invisible hand
- Leon Walras: "Elements of Pure Economics" (1874): mathematical theory of market equilibrium
- Arrow-Debreu (1950's): general equilibrium theory
- Kelso-Crawford (1982): discrete and combinatorial theory of market equilibr.

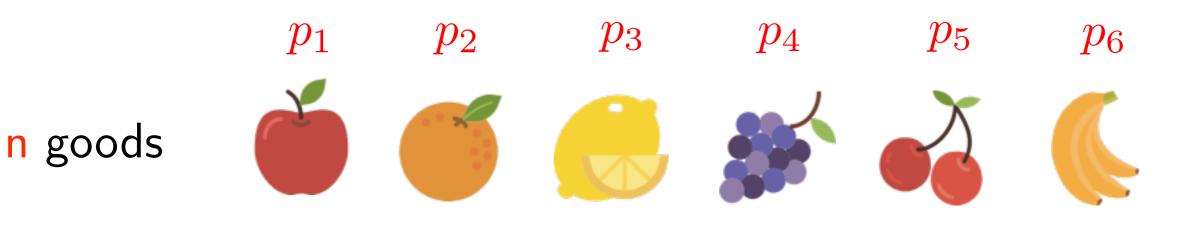




 v_1

 v_4

• Valuations $v_i: 2^N \to \mathbb{R}$



m buyers

 v_1

*v*₃

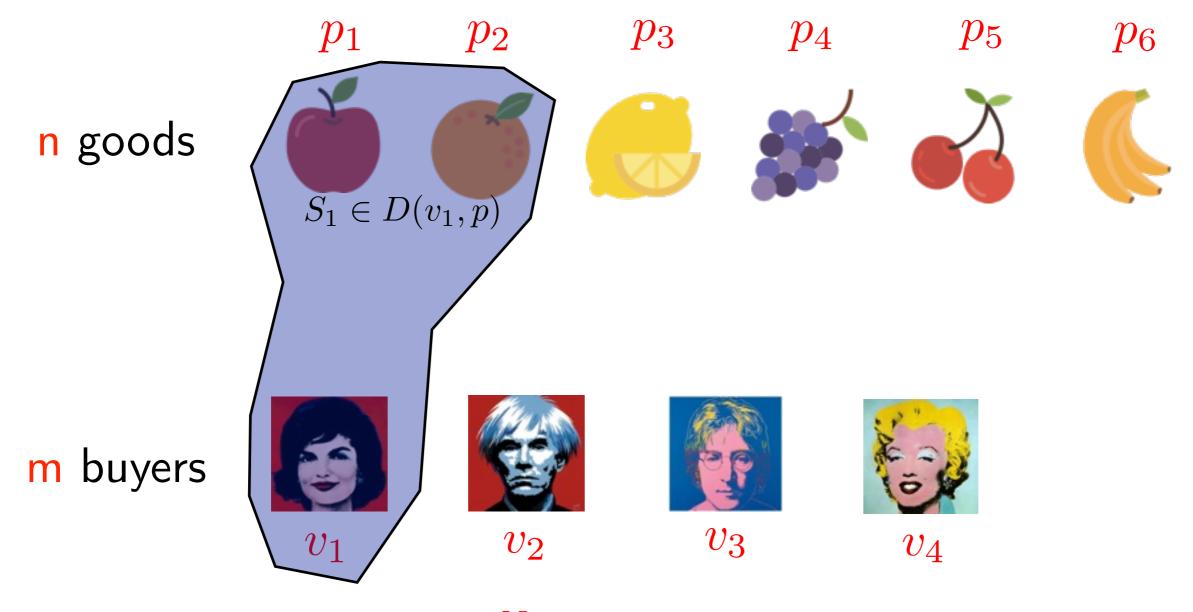
 v_4

• Valuations $v_i: 2^N \to \mathbb{R}$

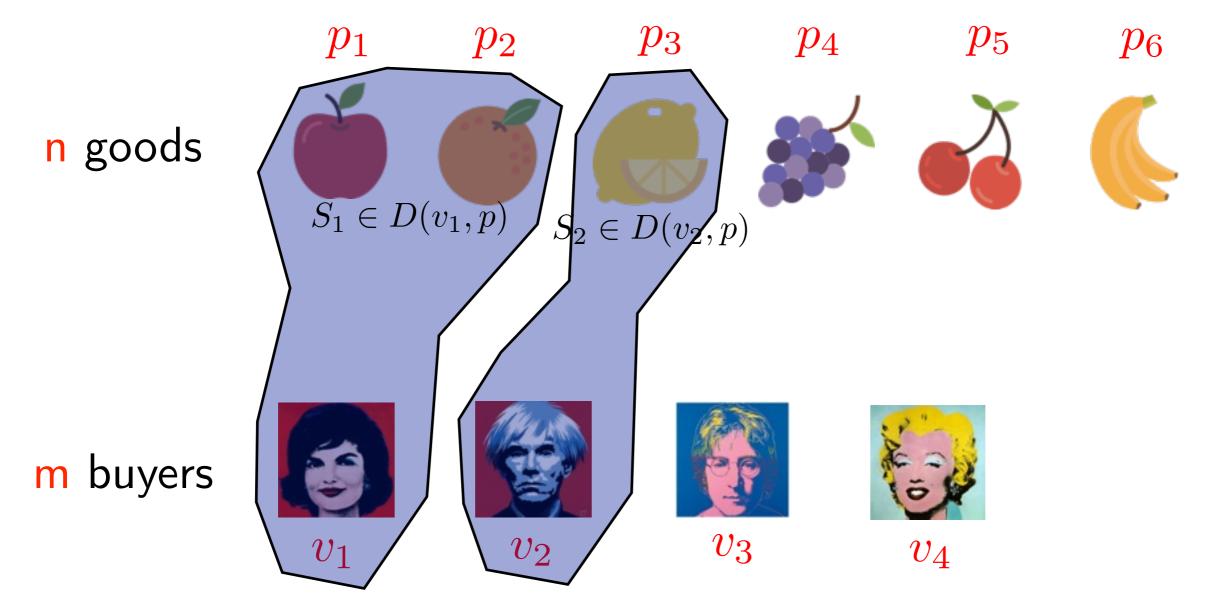
 v_1

 v_4

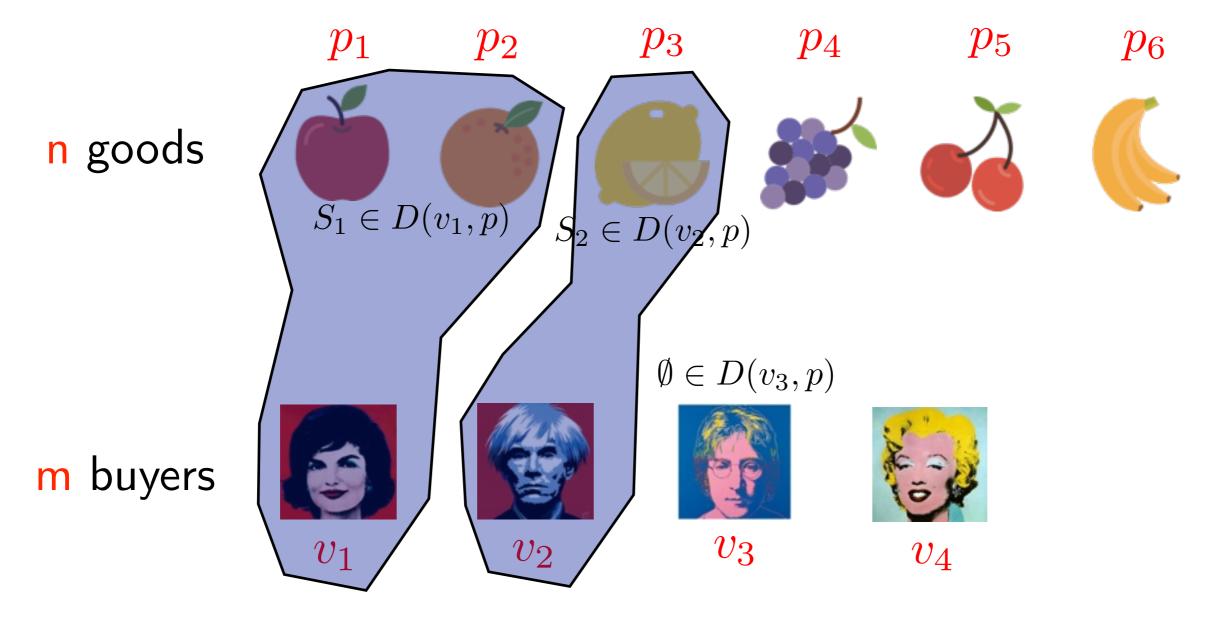
- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$



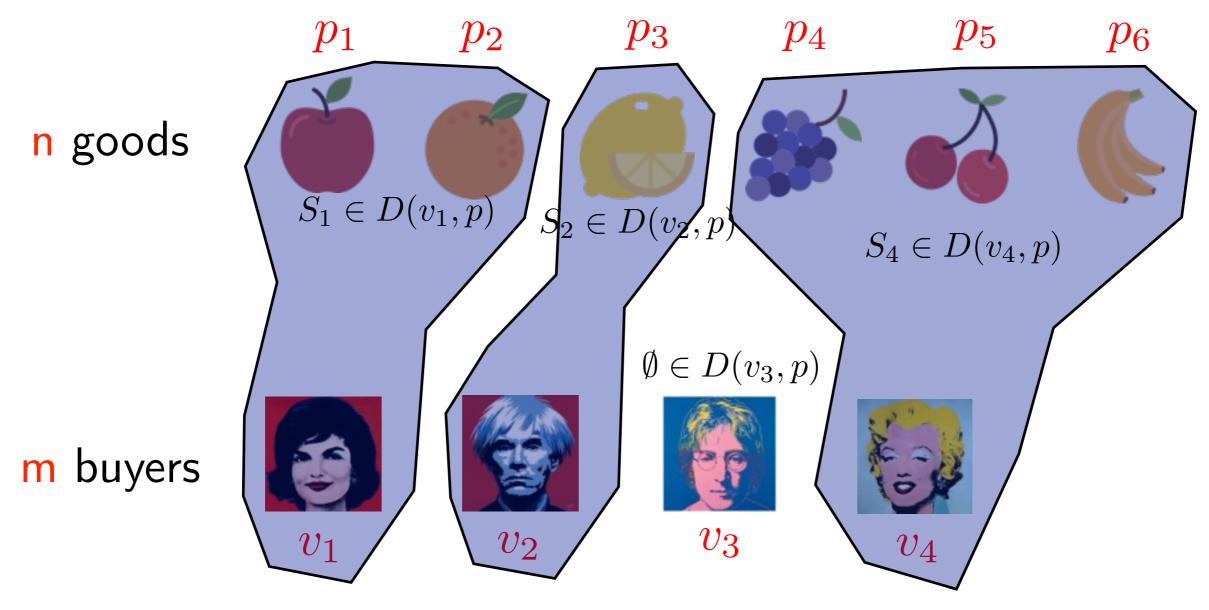
- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$



- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$



- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$



- Valuations $v_i: 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) \sum_{i \in S} p_i]$

• Market equilibrium: prices $p \in \mathbb{R}^n$ s.t. $S_i \in D(v_i, p)$ i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare $\sum_{i} v_i(S_i)$ is maximized.

(proof: LP duality)

How do markets converge to equilibrium prices ?

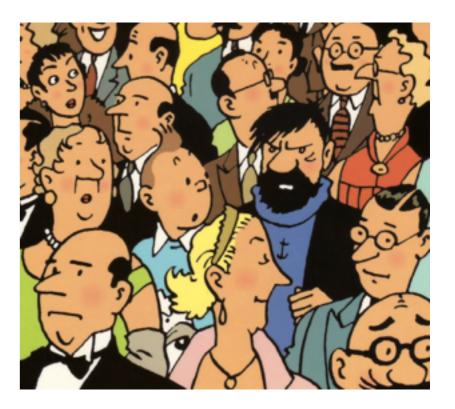
How to compute a Walrasian equilibrium ?

Microscopic

Macroscopic

Telescopic

Macroscopic



Telescopic

Value oracle: given i and S: query $v_i(S)$.

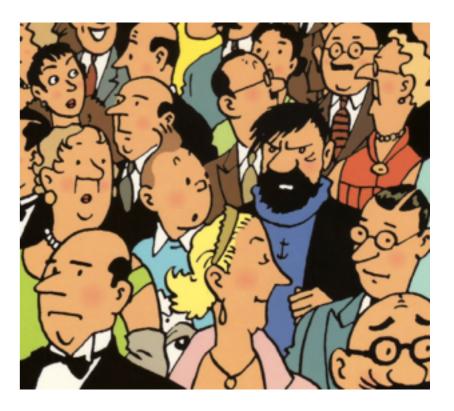
Microscopic

Microscopic

Value oracle: given i and S: query $v_i(S)$.

Macroscopic

Demand oracle: given i and p: query $S \in D(v_i, p)$



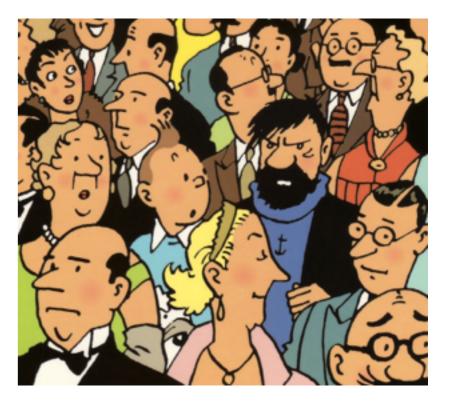
Telescopic

Microscopic

Value oracle: given i and S: query $v_i(S)$.

Demand oracle: given i and p: query $S \in D(v_i, p)$ $\sum_i S_i; S_i \in D(v_i, p)$

Macroscopic



Telescopic

Aggregate Demand: given p, query.

Algorithms for computing equilibria (general case)

Algorithm

tatonnement (trial-and-error) [Walras, Kelso-Crawford, ...] Oracle Access

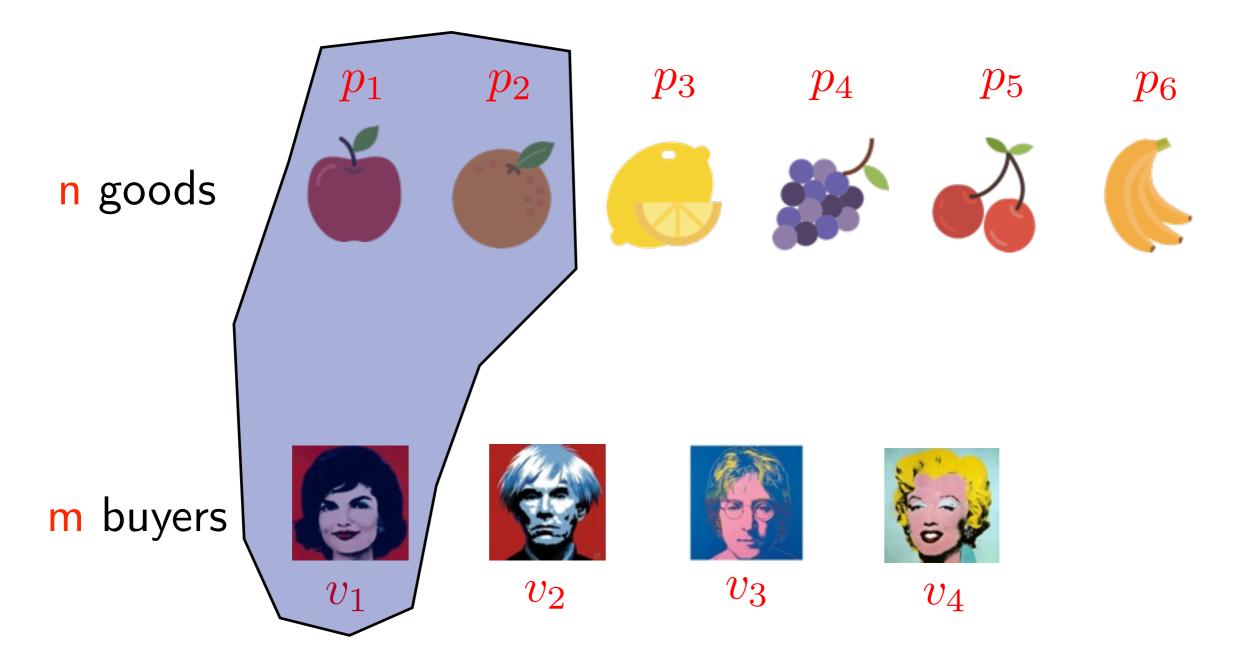
Running time

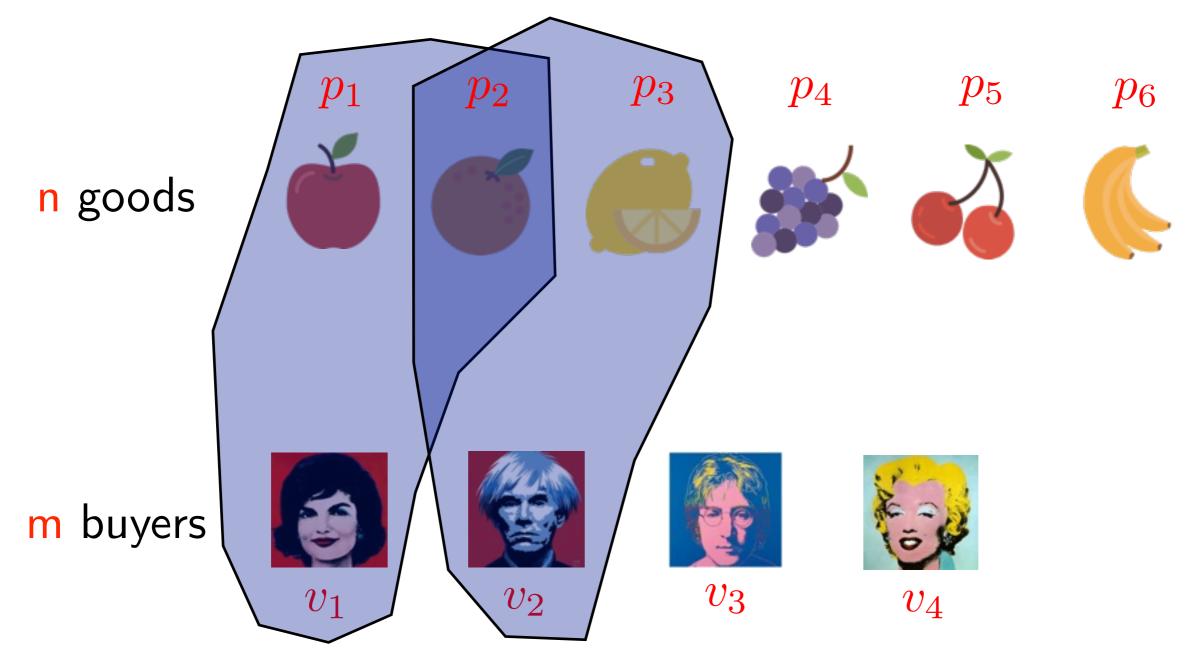
 v_1

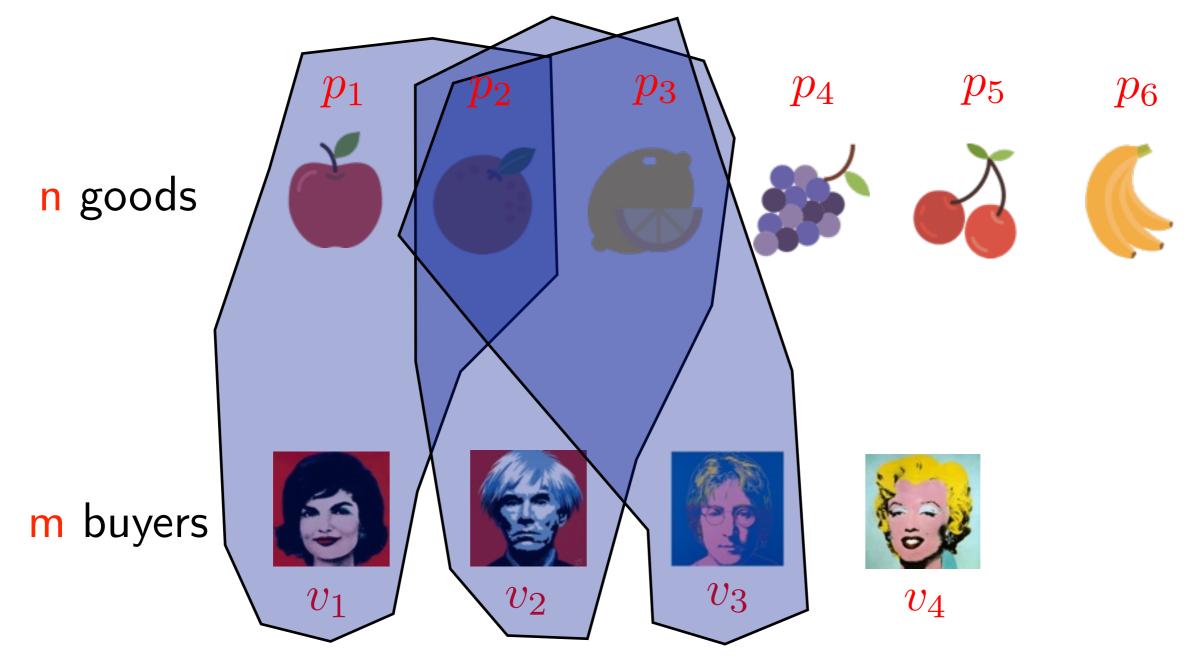
 v_2

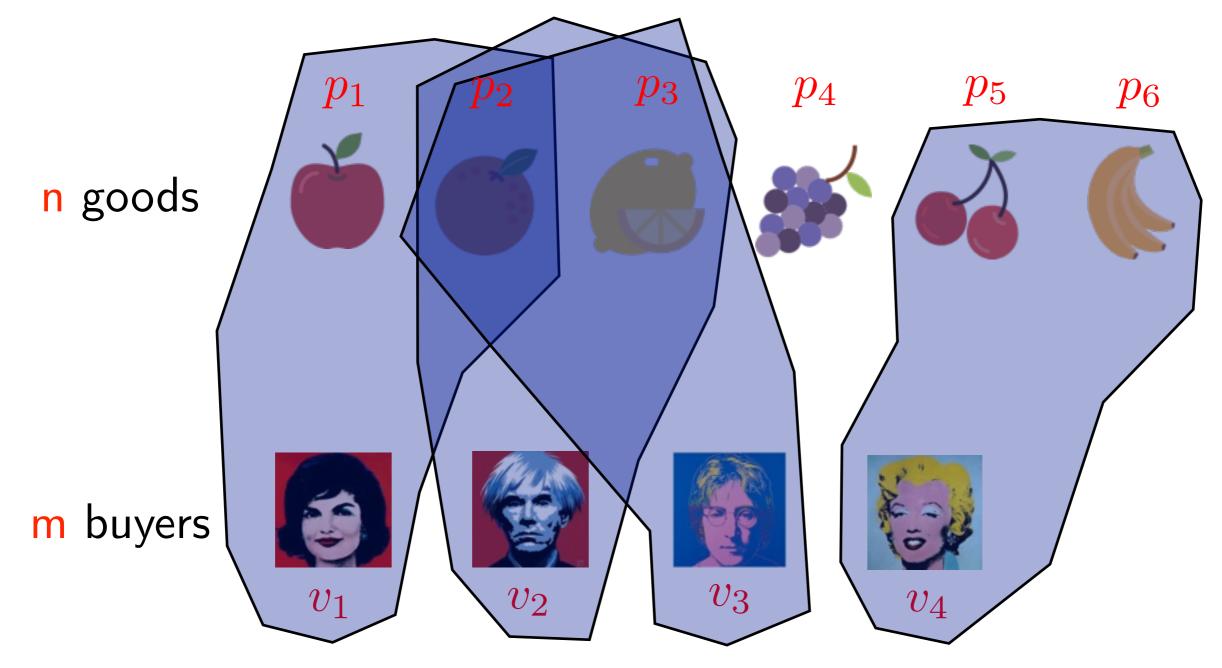
410

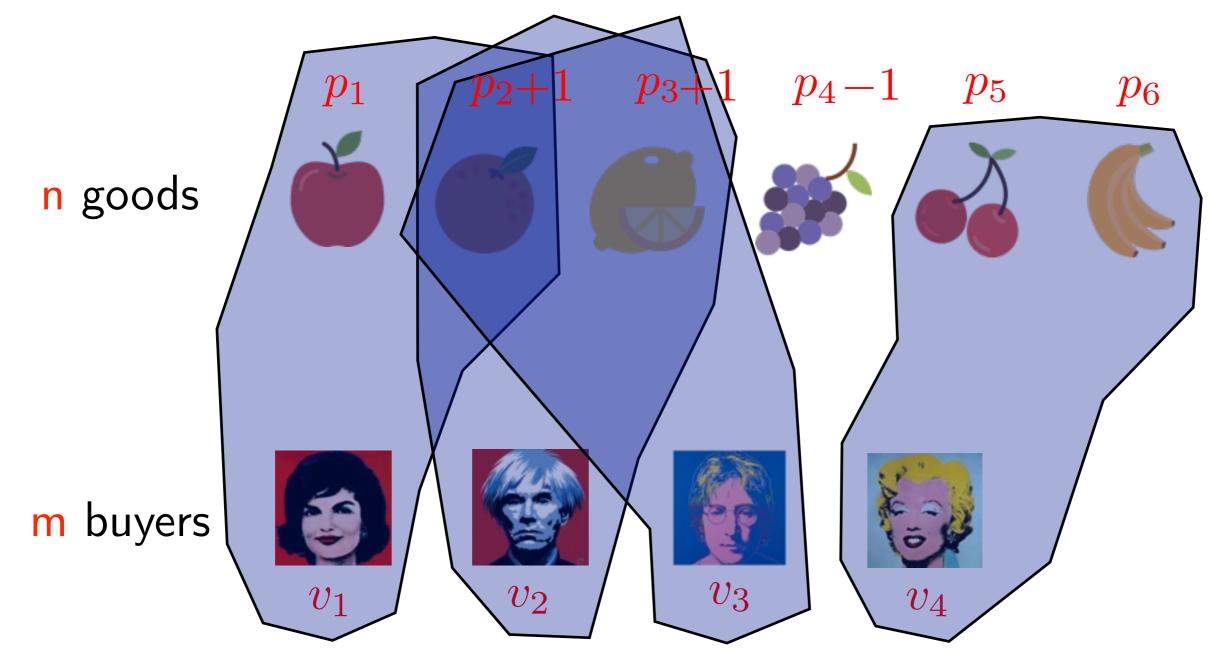
 v_4

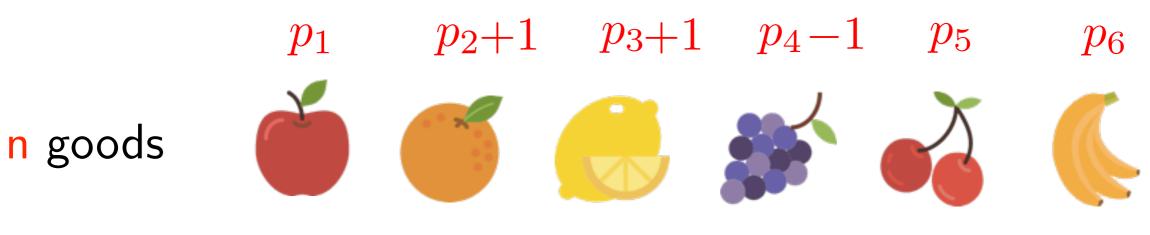








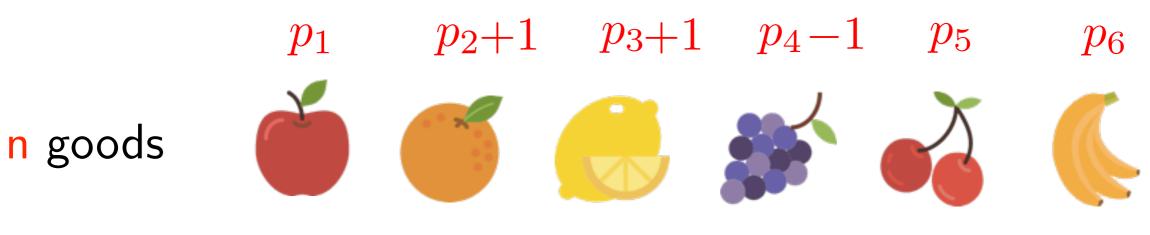




 v_1

 v_2

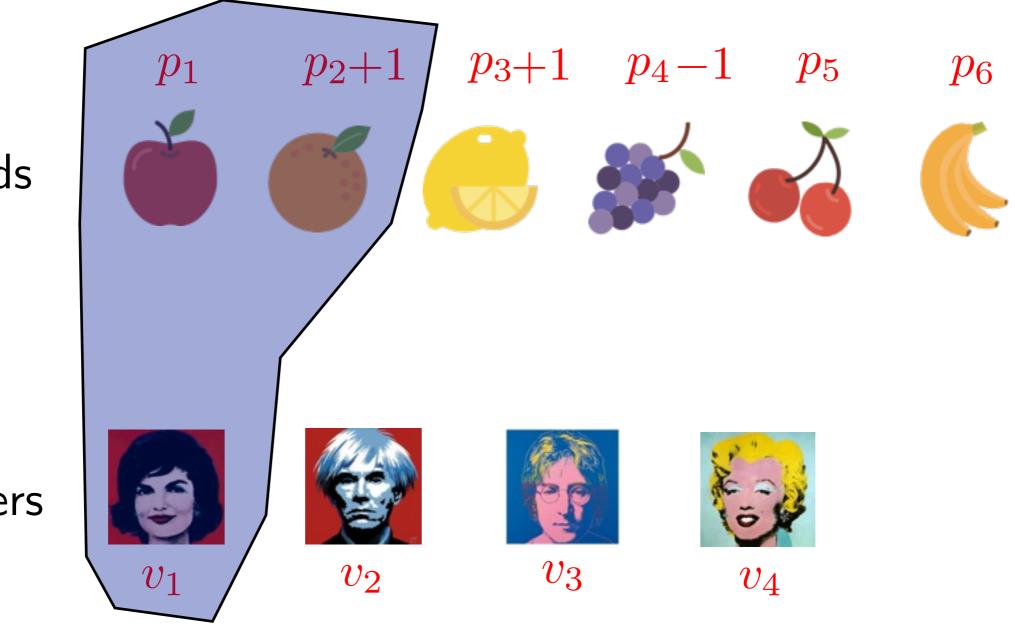
 v_4



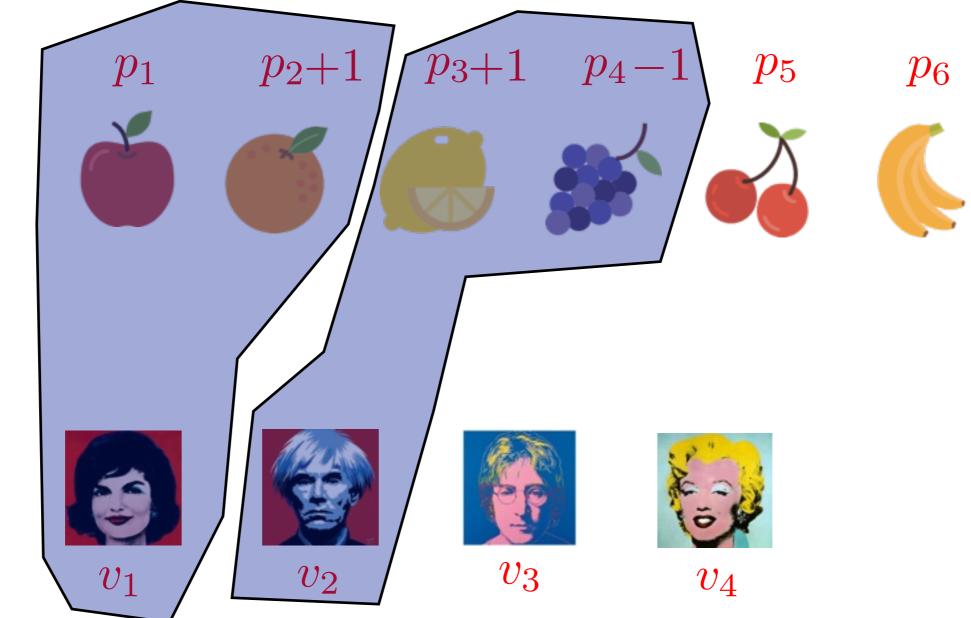
 v_1

 v_2

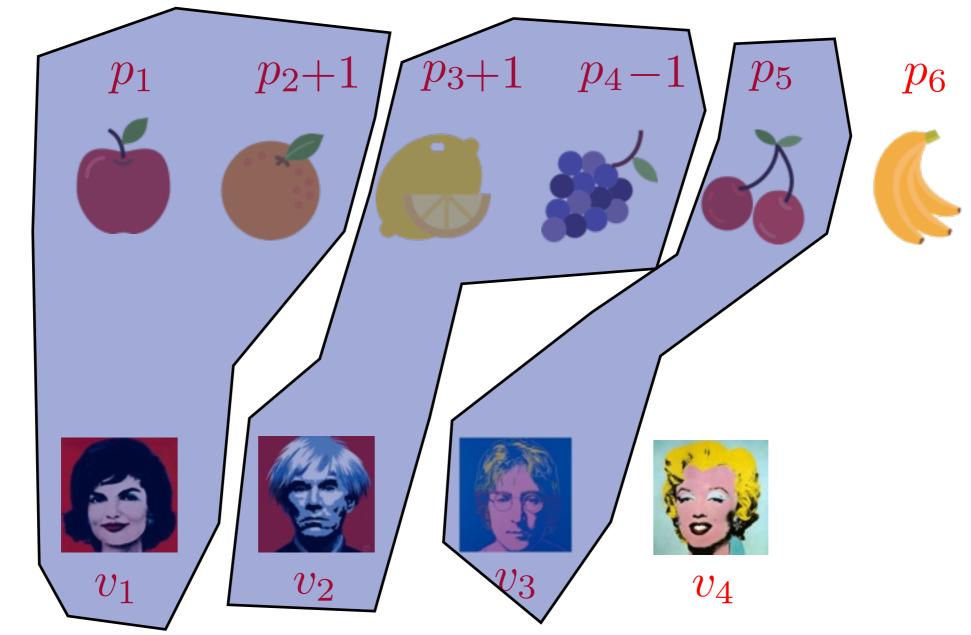
 v_4



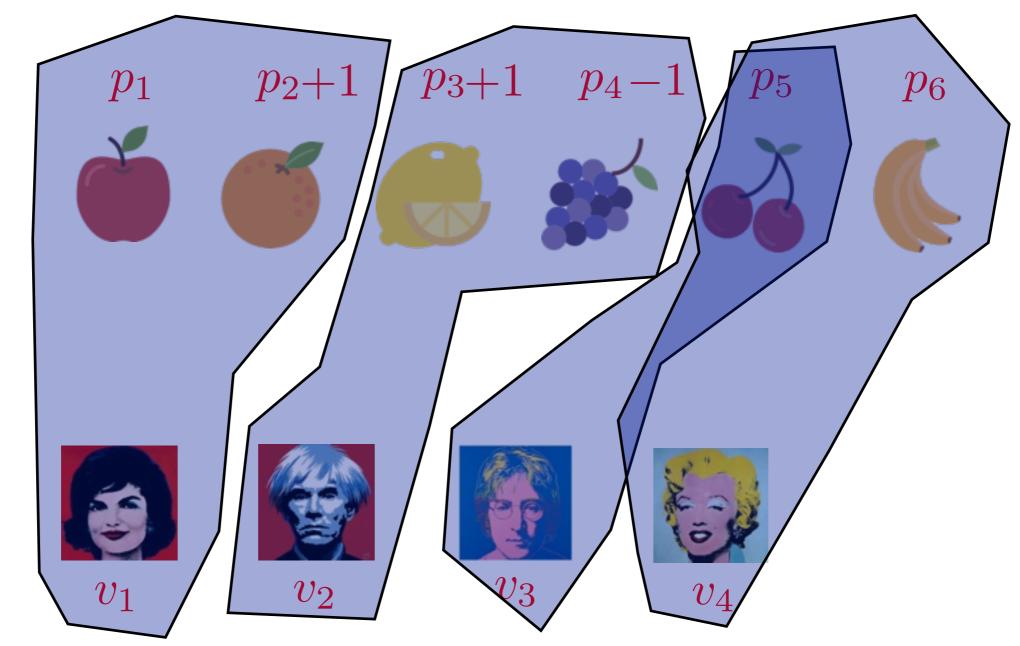
n goods



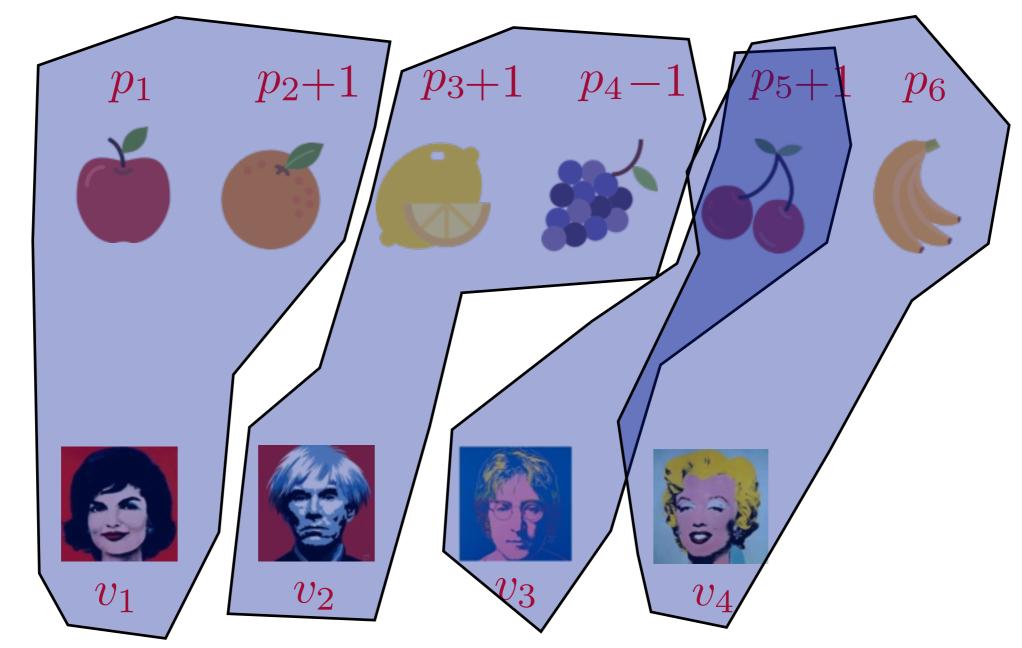
n goods



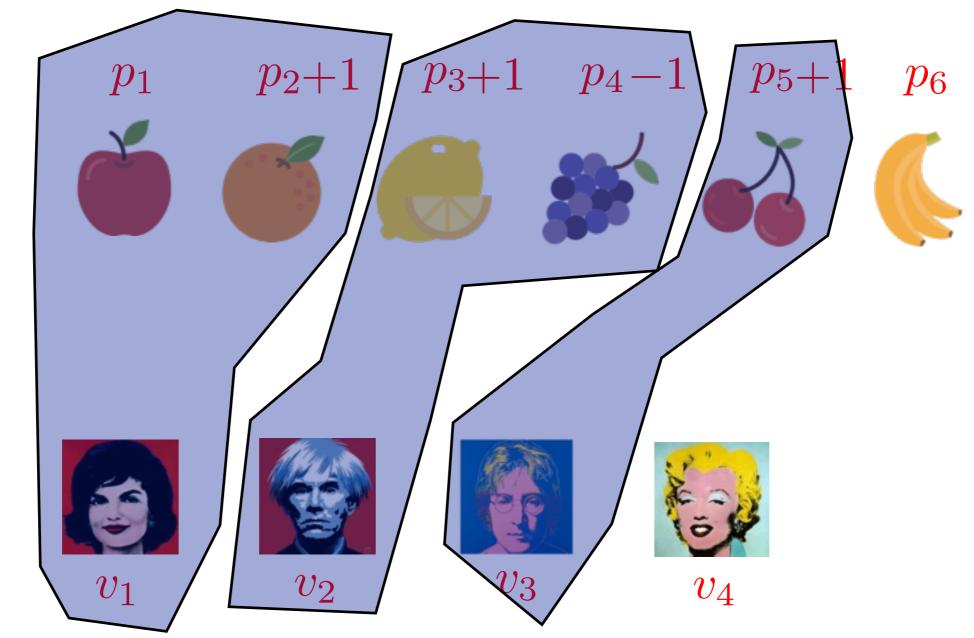
n goods



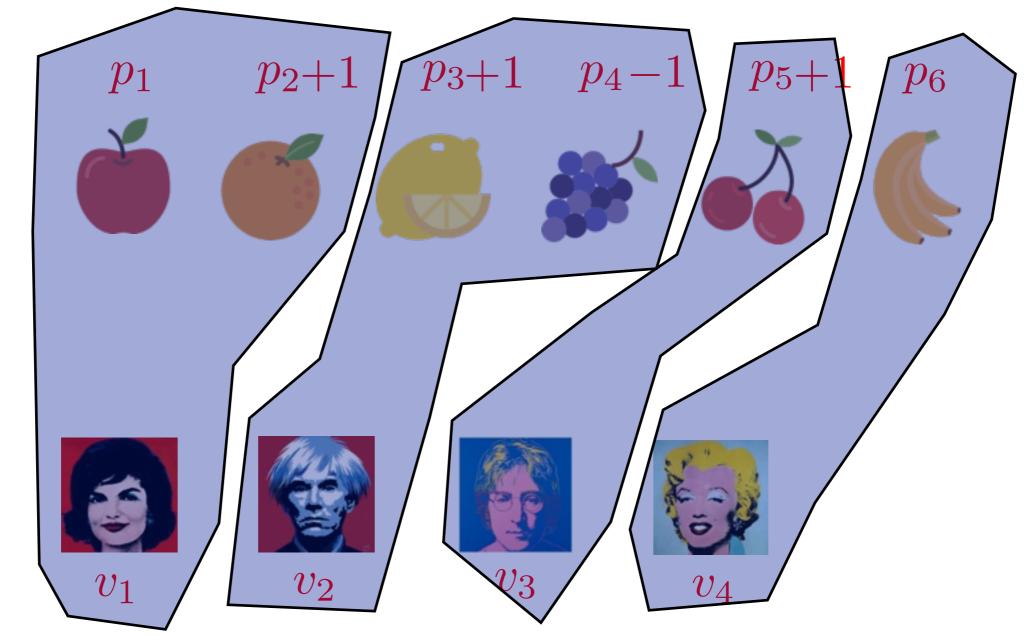
n goods



n goods



n goods



n goods

Gradient Descent Interpretation

- [Kelso-Crawford] analyzes it and shows convergence under a condition called gross substitutes.
 - pseudo poly algorithm

Gradient Descent Interpretation

- [Kelso-Crawford] analyzes it and shows convergence under a condition called gross substitutes.
 - pseudo poly algorithm
- [Ausubel] defined the potential:

 $f(p) = \sum_{i} \max_{S} [v_i(S) - p(S)] + p([n])$

such that gradient descent is exactly tatonnement:

 $\partial_j f(p) = 1 - [\text{total demand for } j]$

• If equilibrium exists then equil prices = $\operatorname{argmin} f(p)$

Algorithms for computing equilibria (general case)

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...] Oracle Access

aggregate demand

Running time

pseudo poly

Algorithms for computing equilibria (general case)

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...]

> Linear programming [Nisan-Segal]

Oracle Access

aggregate demand

demand + value oracle Running time

pseudo poly

poly time

Algorithms for computing equilibria (general case)

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...]

> Linear programming [Nisan-Segal]

> > this paper

Oracle Access

aggregate demand

demand + value oracle

aggregate demand

Running time

pseudo poly

poly time

poly time $ilde{O}(n^2 \cdot T_{AD} + n^5)$

• Nisan and Segal LP:

 $\min \sum_{i} u_i + p([n])$ $u_i \ge v_i(S) - p(S), \forall i, S$

- Nisan and Segal LP: $\min \sum_{i} u_{i} + p([n])$ $u_{i} \ge v_{i}(S) - p(S), \forall i, S$
- demand oracle finds separating constraint
- value oracle to add the hyperplane

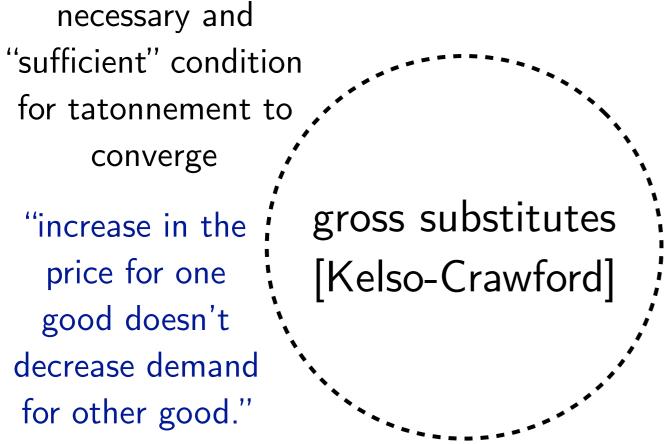
- Nisan and Segal LP: $\min \sum_{i} u_{i} + p([n])$ $u_{i} \ge v_{i}(S) - p(S), \forall i, S$
- demand oracle finds separating constraint
- value oracle to add the hyperplane
- Idea: using cutting plane method to minimize $f(p) = \sum_{i} [\max_{S} v_{i}(S) - p(S)] + p([n])$

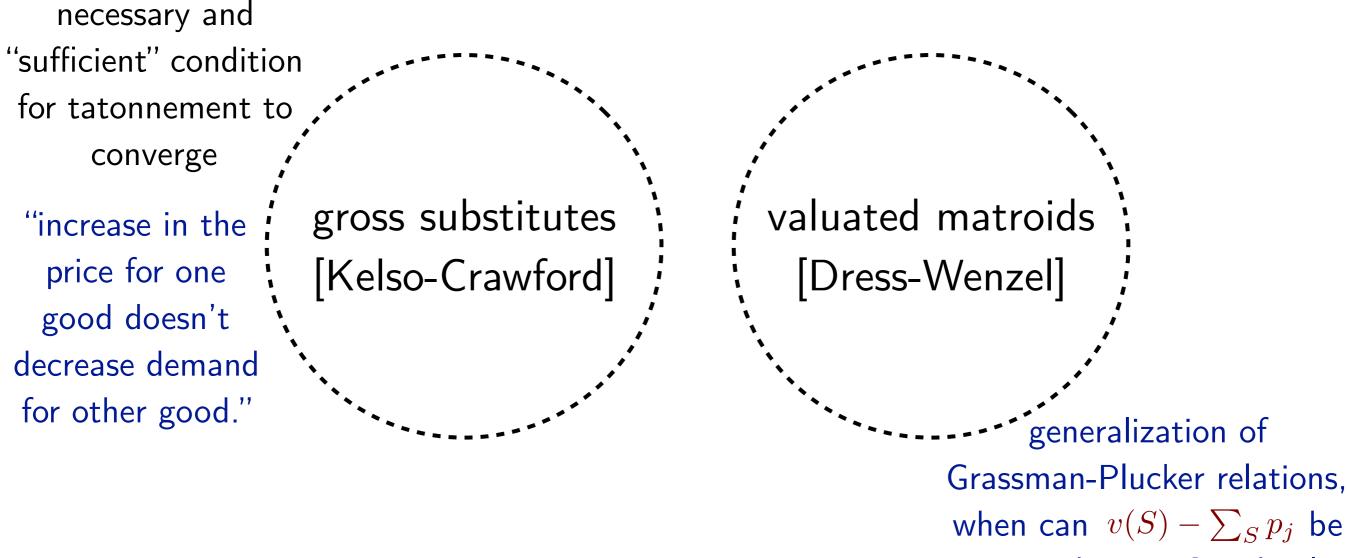
- Nisan and Segal LP: $\min \sum_{i} u_i + p([n])$ $u_i \ge v_i(S) - p(S), \forall i, S$
- demand oracle finds separating constraint
- value oracle to add the hyperplane
- Idea: using cutting plane method to minimize $f(p) = \sum_{i} [\max_{S} v_{i}(S) - p(S)] + p([n])$
- Two issues with black box application:
 - Evaluate f: ellipsoid and cutting plane need $f(p), \partial f(p)$
 - Approximation: give only approximate solutions

• Optimizing only using the gradient

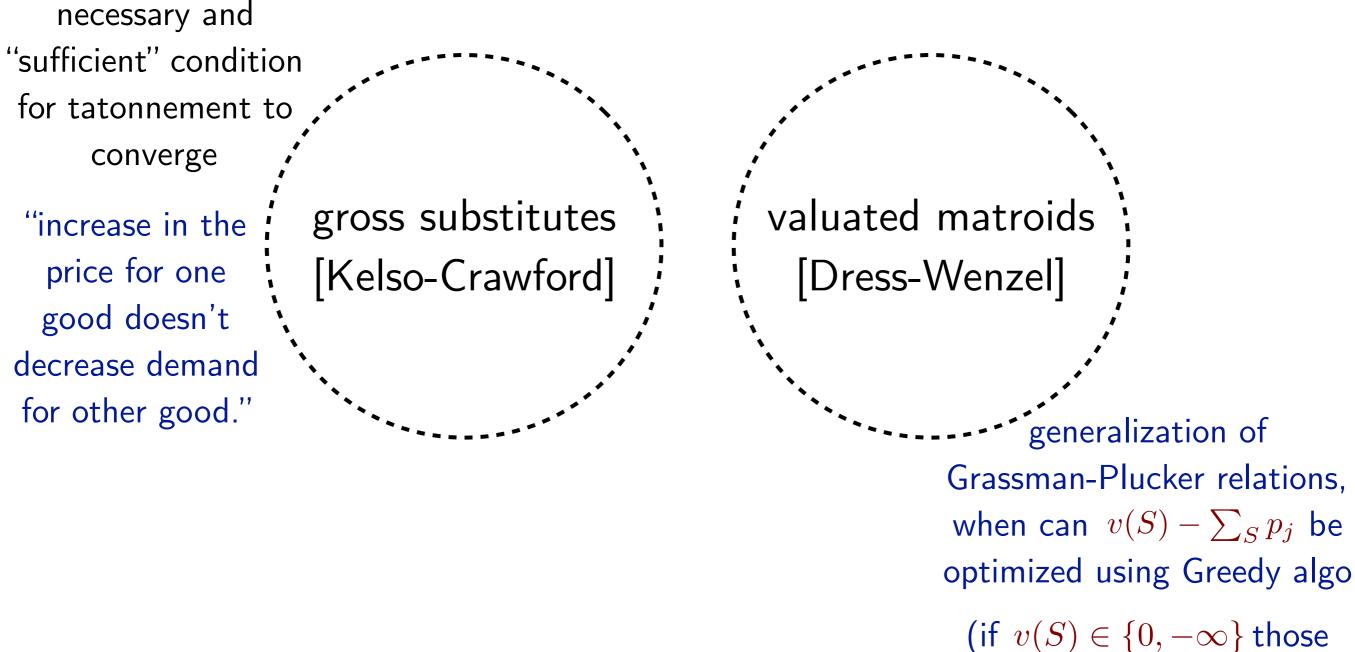
We adapt the cutting plane algorithm of Lee-Sidford-Wong'15 to optimize f using only $\partial f(p)$

- Obtaining exact solutions
 - Exact solution is only known for LPs [Khachiyan]
 - idea: explore the connection of this program and LP
 - But we have restricted access to constraints (only via aggregate demand oracle)
 - Only a restricted perturbation is enough.

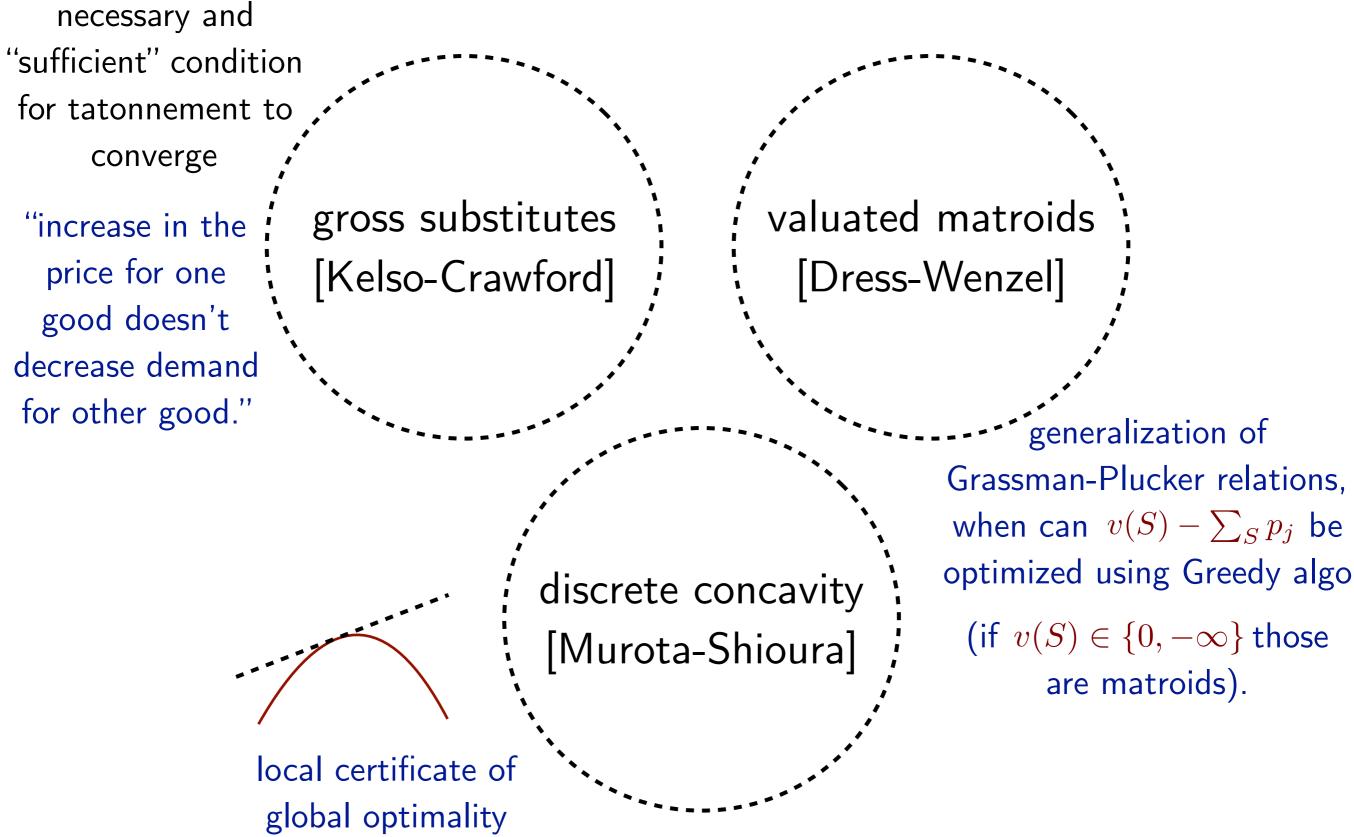


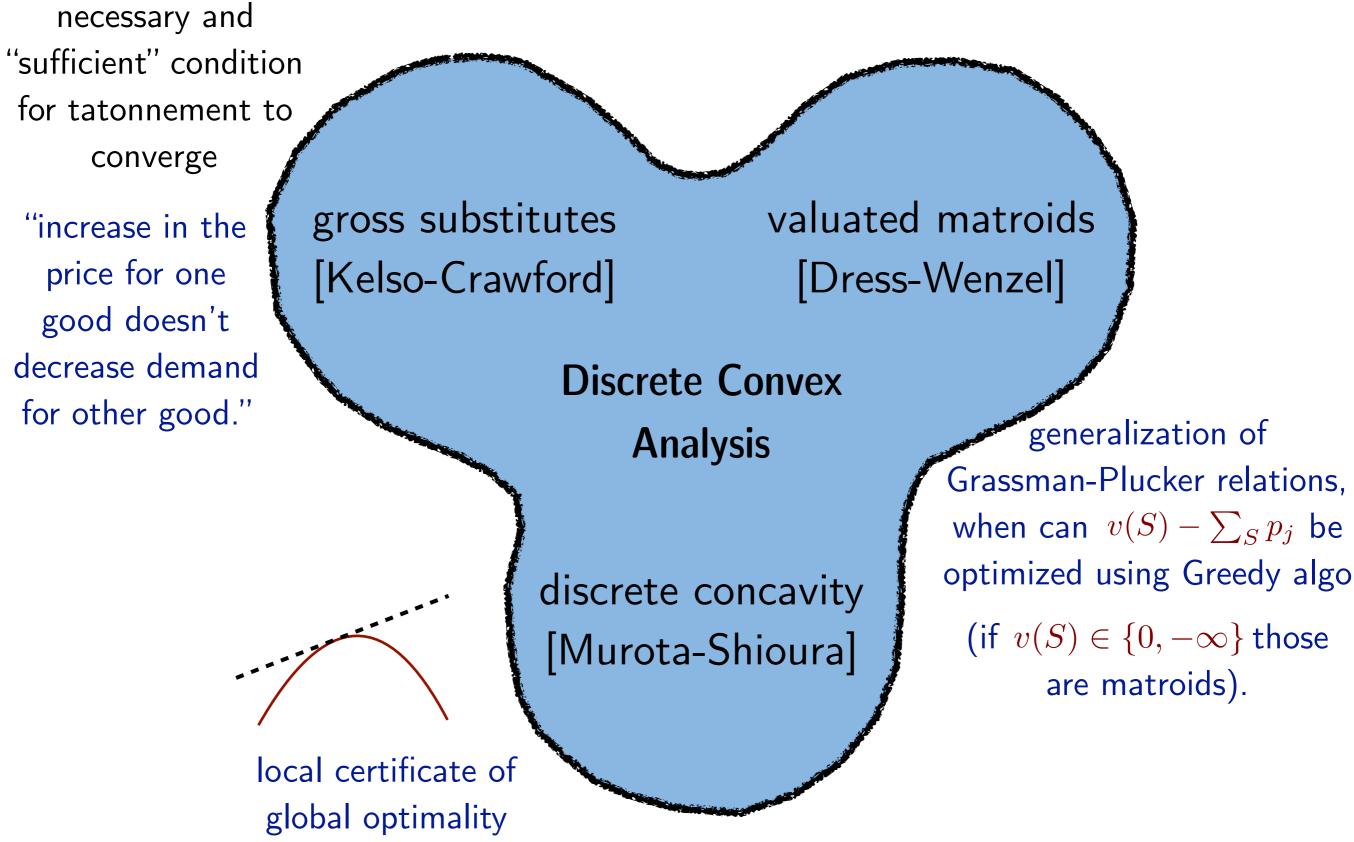


optimized using Greedy algo



are matroids).





Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...] **Oracle Access**

aggregate demand

Running time

pseudo poly

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos [Murota] Oracle Access

aggregate demand

value oracle

Running time pseudo poly

strong poly time $\tilde{O}(mn^3 \cdot T_V)$

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos [Murota]

this paper

Oracle Access

aggregate demand

value oracle

aggregate demand

Running time pseudo poly

strong poly time $\tilde{O}(mn^3 \cdot T_V)$

 $\tilde{O}(n \cdot T_{AD} + n^3)$

Algorithm

tatonnement / gradient descent [Walras, Kelso-Crawford, ...]

Combinatorial flow-based algos [Murota]

this paper

this paper

Oracle Access

aggregate demand

value oracle

aggregate demand

value oracle

Running time pseudo poly

strong poly time $\tilde{O}(mn^3 \cdot T_V)$

 $\tilde{O}(n \cdot T_{AD} + n^3)$

 $\tilde{O}((mn+n^3)\cdot T_V)$

Improving the algorithm for gross substitutes

- Better rounding using structure of gross substitutes gets us to $\tilde{O}(n \cdot T_{AD} + n^3)$

• plugging $T_{AD} = O(mn^2 \cdot T_V)$ we get $\tilde{O}(mn^3 \cdot T_V)$

- Regularization: gradients are expensive to compute.
 - it takes $O(n^2 \cdot T_V)$ to run Greedy for each buyer.
 - gradients are cheap near the optimal
 - re-use computation from one step to the next
 - we only need precise gradients near the optimum

 $\hat{f}(p) = \sum_{i} [\max_{S} v_i(S) - p(S) + \epsilon |S|] + p([n]) - \epsilon n$

Improving the algorithm for gross substitutes

• Regularized objective:

$$\hat{f}(p) = \sum_{i} [\max_{S} v_i(S) - p(S) + \epsilon |S|] + p([n]) - \epsilon n$$

- Same optimal value
- Very accurate near the optimal value, directionally correct for other values.
- Takes only $O(n^2)$ time to compute with O(mn) pre-processing.

Conclusion

- Market equilibrium can be computed:
 - only very aggregated information
 - in $\tilde{O}(n)$ calls to this oracle.

- Questions to think about:
 - Markets that change over time ? New items, new buyers, ... How to update market equilibrium.
 - Strongly poly time algorithms.