Feature-Based Dynamic Pricing

Maxime Cohen ^{1,2} Ilan Lobel ^{1,2} Renato Paes Leme ²

 1 NYU Stern

²Google Research

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Setup: In each timestep:

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

Receives an item with feature vector x_t ∈ ℝ^d.
 e.g. x_t = (2 bedroom, 1 bathroom, no fireplace, Brooklyn, ...)

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

Receives an item with feature vector x_t ∈ ℝ^d.
 e.g. x_t = (2 bedroom, 1 bathroom, no fireplace, Brooklyn, ...)

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector $x_t \in \mathbb{R}^d$. e.g. $x_t = (2, 1, 0, 1, ..)$

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

- Receives an item with feature vector x_t ∈ ℝ^d.
 e.g. x_t = (2, 1, 0, 1, ..)
- 2. Chooses a price p_t for the house.

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

- Receives an item with feature vector x_t ∈ ℝ^d.
 e.g. x_t = (2, 1, 0, 1, ..)
- 2. Chooses a price p_t for the house.
- 3. Observes if the house was sold or not.

In each timestep the real estate agent receives a house to sell and needs to decide which price to put it in the market.

Setup: In each timestep:

- Receives an item with feature vector x_t ∈ ℝ^d.
 e.g. x_t = (2, 1, 0, 1, ..)
- 2. Chooses a price p_t for the house.
- 3. Observes if the house was sold or not.
 - if $p_t \leq v(x_t)$, we sell and make profit p_t .
 - if $p_t > v(x_t)$, we don't sell and make zero profit.

Learn/Earn or Explore/Exploit:

We don't know the market value $v(x_t)$.

Contextual problem:

The product is different in each round and adversarially chosen.

Learn/Earn or Explore/Exploit:

We don't know the market value $v(x_t)$.

Contextual problem:

The product is different in each round and adversarially chosen.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions:

Learn/Earn or Explore/Exploit:

We don't know the market value $v(x_t)$.

Contextual problem:

The product is different in each round and adversarially chosen.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions:

1. Linear model: $v(x_t) = \theta^{\top} x_t$ for $\theta \in \mathbb{R}^d$.

Learn/Earn or Explore/Exploit:

We don't know the market value $v(x_t)$.

Contextual problem:

The product is different in each round and adversarially chosen.

Assumptions:

- 1. Linear model: $v(x_t) = \theta^{\top} x_t$ for $\theta \in \mathbb{R}^d$.
- 2. The parameter θ is unknown but fixed.

Learn/Earn or Explore/Exploit:

We don't know the market value $v(x_t)$.

Contextual problem:

The product is different in each round and adversarially chosen.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions:

- 1. Linear model: $v(x_t) = \theta^{\top} x_t$ for $\theta \in \mathbb{R}^d$.
- 2. The parameter θ is unknown but fixed.
- 3. Normalization: $||x_t|| \leq 1, \forall t, ||\theta|| \leq R$.

Goal and Applications

Goal: Minimize worst-case regret.

$$\mathsf{Regret} = \sum_{t=1}^{T} \theta^{\top} x_t - p_t \cdot \mathbf{1} \{ p_t \leq \theta^{\top} x_t \}$$

Applications: online advertisement, real-estate, domain pricing, ...

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

$$K_0 =$$
 $\stackrel{0}{\vdash}$ $\stackrel{1}{\vdash}$

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

$$K_1 = \underbrace{\begin{array}{ccc} 0 & p_1 & 1 \\ \bullet & \bullet & \bullet \\ \end{array}}_{\text{don't sell}} \text{don't sell}$$

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

$$K_2 = \underbrace{\begin{array}{ccc} 0 & p_2 & p_1 & 1 \\ \hline \bullet & \bullet & \bullet \end{array}}_{K_2}$$

after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].
so θ̂ always sells so:

$$\mathsf{Regret} \leq \log rac{1}{\epsilon} + \left(\mathcal{T} - \log rac{1}{\epsilon}
ight) \cdot \epsilon = O\left(\log \mathcal{T}
ight)$$

for $\epsilon = O(\log T/T)$.

Simple setting:

One dimensional (d = 1) + no context $x_t = 1, \forall t$. Regret = $\theta T - \sum_t p_t \cdot \mathbf{1} \{ p_t \leq \theta \}$. and $\theta \in [0, 1]$.

Binary search:

after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].
so θ̂ always sells so:

$$\mathsf{Regret} \leq \log rac{1}{\epsilon} + \left(\mathcal{T} - \log rac{1}{\epsilon}
ight) \cdot \epsilon = O\left(\log \mathcal{T}
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for $\epsilon = O(\log T/T)$.

• Leighton & Kleinberg: Optimal Regret = $O(\log \log T)$.

Knowledge sets K_t

All θ compatible with observations so far.

(ロ)、(型)、(E)、(E)、 E) のQの

Knowledge sets K_t

All θ compatible with observations so far.

(日) (個) (目) (目) (目) (目)

Knowledge sets K_t

All θ compatible with observations so far.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knowledge sets K_t

All θ compatible with observations so far.

Knowledge sets K_t

All θ compatible with observations so far.

Knowledge sets K_t

All θ compatible with observations so far.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Our Goal: Find $\hat{\theta}$ such that $\|\theta - \hat{\theta}\| \le \epsilon$, since $|\theta^\top x_t - \hat{\theta}^\top x_t| \le \epsilon$ for all contexts x_t .

 $\mathsf{Idea}~\#~1$

Plan:

Narrow down K_t to $B(\hat{\theta}, \epsilon)$ and exploit from then on.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Issues with this approach:

- You may never see a certain feature.
- Some features might be correlated.
- Often it is not good to wait to profit.

Plan:

Explore if there if enough uncertainty about $\theta^{\top} x_t$. Compute $\overline{p}_t = \max_{\theta \in K_t} \theta^{\top} x_t$ and $\underline{p}_t = \min_{\theta \in K_t} \theta^{\top} x_t$ and exploit if

$$|\overline{p}_t - \underline{p}_t| \le \epsilon$$

Which price to use in exploration:

From 1-dimensional binary search, we can try:

$$p_t = \frac{1}{2} \left(\overline{p}_t + \underline{p}_t \right)$$

Plan:

Explore if there if enough uncertainty about $\theta^{\top} x_t$. Compute $\overline{p}_t = \max_{\theta \in K_t} \theta^{\top} x_t$ and $\underline{p}_t = \min_{\theta \in K_t} \theta^{\top} x_t$ and exploit if

$$|\overline{p}_t - \underline{p}_t| \le \epsilon$$

Which price to use in exploration:

From 1-dimensional binary search, we can try:

$$p_t = \frac{1}{2} \left(\overline{p}_t + \underline{p}_t \right)$$

Thm: Regret of this approach is exponential in *d*. *Intuition:* Shaving corners of a polytope in higher dimensions.

Plan:

Choose the price to split K_t in two halfs of equal volume.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Issues with this approach:

Not easily computable.

Plan:

Choose the price to split K_t in two halfs of equal volume.

Issues with this approach:

- Not easily computable.
- I don't know if it works or not.
- ▶ We get K_t of small volume: $\operatorname{vol}(K_t) \leq 2^{-t}$. What we want is $K_t \subseteq B(\hat{\theta}, \epsilon)$

Solution:

After cutting K_t regularize to its Löwner-John ellipsoid (same idea as in the Ellipsoid Method).

Solution:

After cutting K_t regularize to its Löwner-John ellipsoid (same idea as in the Ellipsoid Method).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution:

After cutting K_t regularize to its Löwner-John ellipsoid (same idea as in the Ellipsoid Method).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution:

After cutting K_t regularize to its Löwner-John ellipsoid (same idea as in the Ellipsoid Method).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution:

After cutting K_t regularize to its Löwner-John ellipsoid (same idea as in the Ellipsoid Method).

- We are keeping in the knowledge set some region that are known not to contain θ.
- Ellipsoids are simpler to control. We have a better grasp of them since they can be described by a simple formula:

$$\mathsf{E} = \left\{ heta \in \mathbb{R}^d; (heta - heta_0)^ op \mathsf{A}^{-1}(heta - heta_0) \leq 1
ight\}$$

for a positive definite matrix A.

Learning Algorithm

Initialize $A_0 = I/\sqrt{R}$ and $\theta_0 = 0$, i.e. $K_0 = B(0, R)$. Implicitly we keep $K_t = \{\theta; (\theta - \theta_t)^\top A_t^{-1} (\theta - \theta_t) \le 1\}$ For each timestep t:

- Receive feature vector $x_t \in \mathbb{R}^d$.
- Compute $\underline{p}_t = \min_{\theta \in K_t} \theta^\top x_t$ and $\overline{p}_t = \max_{\theta \in K_t} \theta^\top x_t$.
- If $\overline{p}_t \underline{p}_t < \epsilon$ pick price $p_t = \underline{p}_t$ (Exploit)
- Otherwise choose $p_t = \frac{1}{2} \left(\overline{p}_t + \underline{p}_t \right)$ (Explore) and update:

$$A_{t+1} = \frac{d^2}{d^2 + 1} \left(A_t - \frac{2}{d+1} b b^\top \right)$$

and $\theta_{t+1} = \theta_t \pm \frac{1}{d+1}b$ where $b = -\theta_t + \operatorname{argmax}_{\theta \in K_t} \theta^\top x_t$.

Learning Algorithm

Initialize $A_0 = I/\sqrt{R}$ and $\theta_0 = 0$, i.e. $K_0 = B(0, R)$. Implicitly we keep $K_t = \{\theta; (\theta - \theta_t)^\top A_t^{-1} (\theta - \theta_t) \le 1\}$ For each timestep t:

- Receive feature vector $x_t \in \mathbb{R}^d$.
- Compute <u>p</u>_t = min_{θ∈Kt} θ^Tx_t and <u>p</u>_t = max_{θ∈Kt} θ^Tx_t. (Solving a linear system since K_t is an ellipsoid)
- ► If $\overline{p}_t \underline{p}_t < \epsilon$ pick price $p_t = \underline{p}_t$ (Exploit)
- Otherwise choose $p_t = \frac{1}{2} \left(\overline{p}_t + \underline{p}_t \right)$ (Explore) and update:

$$A_{t+1} = rac{d^2}{d^2+1}\left(A_t - rac{2}{d+1}bb^{ op}
ight)$$

and $\theta_{t+1} = \theta_t \pm \frac{1}{d+1}b$ where $b = -\theta_t + \operatorname{argmax}_{\theta \in K_t} \theta^\top x_t$.

Strategy for proving low regret

Guarantee a small number of exploration steps.

Lemma: If we explore for more than $O\left(Rd^2\log\left(\frac{Rd}{\epsilon^2}\right)\right)$ steps, then K_t will be contained in a ball of radius ϵ . From then on, the algorithm will only exploit.

Theorem: Regret $\leq O(Rd^2 \log T)$ for $\epsilon = Rd^2/T$.

• We know $\operatorname{vol}(K_{t+1}) \leq e^{-1/(d+1)} \operatorname{vol}(K_t)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

- We know $\operatorname{vol}(K_{t+1}) \leq e^{-1/(d+1)} \operatorname{vol}(K_t)$.
- We need a bound on the width, which is max_{θ∈Kt} θ^Tx − min_{θ∈Kt} θ^Tx. Corresponds to bounding the eigenvalues of A_t.

- We know $\operatorname{vol}(K_{t+1}) \leq e^{-1/(d+1)} \operatorname{vol}(K_t)$.
- We need a bound on the width, which is max_{θ∈Kt} θ^Tx − min_{θ∈Kt} θ^Tx. Corresponds to bounding the eigenvalues of A_t.
- ▶ We know $\operatorname{vol}_t = c_d \cdot \sqrt{\prod_i \lambda_i^t} = e^{-t/(d+1)}$. If we show that the smallest eigenvalue doesn't decrease too fast, then all the eigenvalues must eventually be small.

- We know $\operatorname{vol}(K_{t+1}) \leq e^{-1/(d+1)} \operatorname{vol}(K_t)$.
- We need a bound on the width, which is max_{θ∈Kt} θ^Tx − min_{θ∈Kt} θ^Tx. Corresponds to bounding the eigenvalues of A_t.
- ▶ We know $\operatorname{vol}_t = c_d \cdot \sqrt{\prod_i \lambda_i^t} = e^{-t/(d+1)}$. If we show that the smallest eigenvalue doesn't decrease too fast, then all the eigenvalues must eventually be small.
- We need to use the fact we never cut along directions that have small width, where width = p
 _t − p_t.

Controlling eigenvalues (high level details)

• Given eigenvalue of A_t we want to bound the eigenvalues of

$$A_{t+1} = \frac{d^2}{d^2 + 1} \underbrace{\left(A_t - \frac{2}{d+1}bb^{\top}\right)}_{B_{t+1}}$$

If λ^t₁ ≥ ... ≥ λ^t_d are the eigenvalues of A_t, then the characteristic polynomial of B_{t+1} is:

$$arphi_{B_{t+1}}(x) = \prod_{j} (\lambda_j - x) \cdot \underbrace{\left[1 - eta \sum_{i} rac{ ilde{b}_i^2}{\lambda_i - x}
ight]}_{\hat{arphi}_{B_{t+1}}}$$

► $\lambda_d^{t+1} \ge \lambda_d^t$ iff $\hat{\varphi}_{B_{t+1}}\left(\frac{d^2-1}{d^2}\lambda_d^t\right) \ge 0$. We show that this inequality holds whenever λ_d^t is small enough and $b^\top x \ge \epsilon$.

Connections

1. **Contextual Bandits:** We have a contextual bandit setting with adversarial context and a discontinuous loss function:

2. Out of the shelf contextual learning algorithms obtain $O(\sqrt{T})$ regret, are more computationally expensive, but don't assume that θ is fixed, instead they seek to be competitive against the best θ :

$$\mathsf{Regret} = \max_{\theta} \sum_{t=1}^{T} \theta^{\top} x_t \cdot \mathbf{1} \{ \theta^{\top} x_t \leq v_t \} - p_t \cdot \mathbf{1} \{ p_t \leq v_t \}$$

3. Quantum states (?): Probing a buyer if he will buy at a certain price shares similarities with probing a quantum state with a linear measurement.

Lower bounds and Open Problems

1. A lower bound of $\Omega(d \log \log T)$ can be derived from embedding *d* independent instances of the 1-dimensional problem (feature vectors are coordinate vectors).

- 2. Other applications of multi-dimensional binary search.
- 3. Stochastic setting: $\theta \sim \mathcal{F}$, $x \sim \mathcal{D}$.

Thanks !