
Feature-Based Dynamic Pricing

Maxime Cohen 1,2 Ilan Lobel 1,2 Renato Paes Leme 2

1NYU Stern

2Google Research

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2 bedroom, 1 bathroom, no fireplace,Brooklyn, ...)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2 bedroom, 1 bathroom, no fireplace,Brooklyn, ...)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2, 1, 0, 1, ..)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2, 1, 0, 1, ..)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2, 1, 0, 1, ..)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.

I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Real estate agent problem

In each timestep the real estate agent receives a house to sell and
needs to decide which price to put it in the market.

Setup: In each timestep:

1. Receives an item with feature vector xt ∈ Rd .
e.g. xt = (2, 1, 0, 1, ..)

2. Chooses a price pt for the house.

3. Observes if the house was sold or not.
I if pt ≤ v(xt), we sell and make profit pt .
I if pt > v(xt), we don’t sell and make zero profit.

Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don’t know the market value v(xt).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:

1. Linear model: v(xt) = θ>xt for θ ∈ Rd .

2. The parameter θ is unknown but fixed.

3. Normalization: ‖xt‖ ≤ 1,∀t, ‖θ‖ ≤ R.

Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don’t know the market value v(xt).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:

1. Linear model: v(xt) = θ>xt for θ ∈ Rd .

2. The parameter θ is unknown but fixed.

3. Normalization: ‖xt‖ ≤ 1,∀t, ‖θ‖ ≤ R.

Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don’t know the market value v(xt).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:

1. Linear model: v(xt) = θ>xt for θ ∈ Rd .

2. The parameter θ is unknown but fixed.

3. Normalization: ‖xt‖ ≤ 1,∀t, ‖θ‖ ≤ R.

Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don’t know the market value v(xt).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:

1. Linear model: v(xt) = θ>xt for θ ∈ Rd .

2. The parameter θ is unknown but fixed.

3. Normalization: ‖xt‖ ≤ 1,∀t, ‖θ‖ ≤ R.

Challenges and Assumptions

Learn/Earn or Explore/Exploit:
We don’t know the market value v(xt).

Contextual problem:
The product is different in each round and adversarially chosen.

Assumptions:

1. Linear model: v(xt) = θ>xt for θ ∈ Rd .

2. The parameter θ is unknown but fixed.

3. Normalization: ‖xt‖ ≤ 1, ∀t, ‖θ‖ ≤ R.

Goal and Applications

Goal: Minimize worst-case regret.

Regret =
T∑
t=1

θ>xt − pt · 1{pt ≤ θ>xt}

Applications: online advertisement, real-estate, domain pricing, ...

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Non-contextual settting

Simple setting:
One dimensional (d = 1) + no context xt = 1,∀t.
Regret = θT −

∑
t pt · 1{pt ≤ θ}. and θ ∈ [0, 1].

Binary search:

K0 =K1 =K2 = don’t sellsell
0 1p1p2

I after log(1/ε) rounds we know θ ∈ [θ̂, θ̂ + ε].

I so θ̂ always sells so:

Regret ≤ log
1

ε
+

(
T − log

1

ε

)
· ε = O (logT)

for ε = O(logT/T).

I Leighton & Kleinberg: Optimal Regret = O(log logT).

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.

Price ranges pt ∈ [p
t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Contextual Setting : Knowledge Sets

Knowledge sets Kt

All θ compatible with observations so far.
Price ranges pt ∈ [p

t
, pt]

p
t

= minθ∈Kt θ
>xt (exploit price, always sells)

pt = maxθ∈Kt θ
>xt (never sells)

Kt

Kt+1

Kt+1

sell

don’t sell

θ>xt ≥ ptθ>xt < pt

xt

pt line

p
t

line

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Game: multi-dimensional binary search

θ̂

Our Goal: Find θ̂ such that ‖θ − θ̂‖ ≤ ε, since |θ>xt − θ̂>xt | ≤ ε
for all contexts xt .

Idea # 1

Plan:
Narrow down Kt to B(θ̂, ε) and exploit from then on.

Issues with this approach:

I You may never see a certain feature.

I Some features might be correlated.

I Often it is not good to wait to profit.

Idea # 2

Plan:
Explore if there if enough uncertainty about θ>xt .
Compute pt = maxθ∈Kt θ

>xt and p
t

= minθ∈Kt θ
>xt

and exploit if
|pt − p

t
| ≤ ε

Which price to use in exploration:
From 1-dimensional binary search, we can try:

pt =
1

2

(
pt + p

t

)

Thm: Regret of this approach is exponential in d .
Intuition: Shaving corners of a polytope in higher dimensions.

Idea # 2

Plan:
Explore if there if enough uncertainty about θ>xt .
Compute pt = maxθ∈Kt θ

>xt and p
t

= minθ∈Kt θ
>xt

and exploit if
|pt − p

t
| ≤ ε

Which price to use in exploration:
From 1-dimensional binary search, we can try:

pt =
1

2

(
pt + p

t

)
Thm: Regret of this approach is exponential in d .
Intuition: Shaving corners of a polytope in higher dimensions.

Idea # 3

Plan:
Choose the price to split Kt in two halfs of equal volume.

Issues with this approach:

I Not easily computable.

I I don’t know if it works or not.

I We get Kt of small volume: vol(Kt) ≤ 2−t .
What we want is Kt ⊆ B(θ̂, ε)

Idea # 3

Plan:
Choose the price to split Kt in two halfs of equal volume.

Issues with this approach:

I Not easily computable.

I I don’t know if it works or not.

I We get Kt of small volume: vol(Kt) ≤ 2−t .
What we want is Kt ⊆ B(θ̂, ε)

Solution: Ellipsoids
Solution:

After cutting Kt regularize to its Löwner-John ellipsoid
(same idea as in the Ellipsoid Method).

I We are keeping in the knowledge set some region that are
known not to contain θ.

I Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E =
{
θ ∈ Rd ; (θ − θ0)>A−1(θ − θ0) ≤ 1

}
for a positive definite matrix A.

Solution: Ellipsoids
Solution:

After cutting Kt regularize to its Löwner-John ellipsoid
(same idea as in the Ellipsoid Method).

I We are keeping in the knowledge set some region that are
known not to contain θ.

I Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E =
{
θ ∈ Rd ; (θ − θ0)>A−1(θ − θ0) ≤ 1

}
for a positive definite matrix A.

Solution: Ellipsoids
Solution:

After cutting Kt regularize to its Löwner-John ellipsoid
(same idea as in the Ellipsoid Method).

I We are keeping in the knowledge set some region that are
known not to contain θ.

I Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E =
{
θ ∈ Rd ; (θ − θ0)>A−1(θ − θ0) ≤ 1

}
for a positive definite matrix A.

Solution: Ellipsoids
Solution:

After cutting Kt regularize to its Löwner-John ellipsoid
(same idea as in the Ellipsoid Method).

I We are keeping in the knowledge set some region that are
known not to contain θ.

I Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E =
{
θ ∈ Rd ; (θ − θ0)>A−1(θ − θ0) ≤ 1

}
for a positive definite matrix A.

Solution: Ellipsoids
Solution:

After cutting Kt regularize to its Löwner-John ellipsoid
(same idea as in the Ellipsoid Method).

I We are keeping in the knowledge set some region that are
known not to contain θ.

I Ellipsoids are simpler to control. We have a better grasp of
them since they can be described by a simple formula:

E =
{
θ ∈ Rd ; (θ − θ0)>A−1(θ − θ0) ≤ 1

}
for a positive definite matrix A.

Learning Algorithm

Initialize A0 = I/
√
R and θ0 = 0, i.e. K0 = B(0,R).

Implicitly we keep Kt = {θ; (θ − θt)>A−1t (θ − θt) ≤ 1}
For each timestep t:

I Receive feature vector xt ∈ Rd .

I Compute p
t

= minθ∈Kt θ
>xt and pt = maxθ∈Kt θ

>xt .

(Solving a linear system since Kt is an ellipsoid)

I If pt − p
t
< ε pick price pt = p

t
(Exploit)

I Otherwise choose pt = 1
2

(
pt + p

t

)
(Explore) and update:

At+1 =
d2

d2 + 1

(
At −

2

d + 1
bb>

)
and θt+1 = θt ± 1

d+1b where b = −θt + argmaxθ∈Kt
θ>xt .

Learning Algorithm

Initialize A0 = I/
√
R and θ0 = 0, i.e. K0 = B(0,R).

Implicitly we keep Kt = {θ; (θ − θt)>A−1t (θ − θt) ≤ 1}
For each timestep t:

I Receive feature vector xt ∈ Rd .

I Compute p
t

= minθ∈Kt θ
>xt and pt = maxθ∈Kt θ

>xt .
(Solving a linear system since Kt is an ellipsoid)

I If pt − p
t
< ε pick price pt = p

t
(Exploit)

I Otherwise choose pt = 1
2

(
pt + p

t

)
(Explore) and update:

At+1 =
d2

d2 + 1

(
At −

2

d + 1
bb>

)
and θt+1 = θt ± 1

d+1b where b = −θt + argmaxθ∈Kt
θ>xt .

Main Theorem

Strategy for proving low regret
Guarantee a small number of exploration steps.

Lemma: If we explore for more than O
(
Rd2 log

(
Rd
ε2

))
steps, then

Kt will be contained in a ball of radius ε. From then on, the
algorithm will only exploit.

Theorem: Regret ≤ O(Rd2 logT) for ε = Rd2/T .

Proof strategy

I We know vol(Kt+1) ≤ e−1/(d+1)vol(Kt).

I We need a bound on the width, which is
maxθ∈Kt θ

>x −minθ∈Kt θ
>x .

Corresponds to bounding the eigenvalues of At .

I We know volt = cd ·
√∏

i λ
t
i = e−t/(d+1). If we show that

the smallest eigenvalue doesn’t decrease too fast, then all the
eigenvalues must eventually be small.

I We need to use the fact we never cut along directions that
have small width, where width = pt − p

t
.

Proof strategy

I We know vol(Kt+1) ≤ e−1/(d+1)vol(Kt).

I We need a bound on the width, which is
maxθ∈Kt θ

>x −minθ∈Kt θ
>x .

Corresponds to bounding the eigenvalues of At .

I We know volt = cd ·
√∏

i λ
t
i = e−t/(d+1). If we show that

the smallest eigenvalue doesn’t decrease too fast, then all the
eigenvalues must eventually be small.

I We need to use the fact we never cut along directions that
have small width, where width = pt − p

t
.

Proof strategy

I We know vol(Kt+1) ≤ e−1/(d+1)vol(Kt).

I We need a bound on the width, which is
maxθ∈Kt θ

>x −minθ∈Kt θ
>x .

Corresponds to bounding the eigenvalues of At .

I We know volt = cd ·
√∏

i λ
t
i = e−t/(d+1). If we show that

the smallest eigenvalue doesn’t decrease too fast, then all the
eigenvalues must eventually be small.

I We need to use the fact we never cut along directions that
have small width, where width = pt − p

t
.

Proof strategy

I We know vol(Kt+1) ≤ e−1/(d+1)vol(Kt).

I We need a bound on the width, which is
maxθ∈Kt θ

>x −minθ∈Kt θ
>x .

Corresponds to bounding the eigenvalues of At .

I We know volt = cd ·
√∏

i λ
t
i = e−t/(d+1). If we show that

the smallest eigenvalue doesn’t decrease too fast, then all the
eigenvalues must eventually be small.

I We need to use the fact we never cut along directions that
have small width, where width = pt − p

t
.

Controlling eigenvalues (high level details)

I Given eigenvalue of At we want to bound the eigenvalues of

At+1 =
d2

d2 + 1

(
At −

2

d + 1
bb>

)
︸ ︷︷ ︸

Bt+1

I If λt1 ≥ . . . ≥ λtd are the eigenvalues of At , then the
characteristic polynomial of Bt+1 is:

ϕBt+1(x) =
∏
j

(λj − x) ·

[
1− β

∑
i

b̃2i
λi − x

]
︸ ︷︷ ︸

ϕ̂Bt+1

I λt+1
d ≥ λtd iff ϕ̂Bt+1

(
d2−1
d2 λtd

)
≥ 0. We show that this

inequality holds whenever λtd is small enough and b>x ≥ ε.

Connections
1. Contextual Bandits: We have a contextual bandit setting

with adversarial context and a discontinuous loss function:

p

loss

2. Out of the shelf contextual learning algorithms obtain
O(
√
T) regret, are more computationally expensive, but don’t

assume that θ is fixed, instead they seek to be competitive
against the best θ:

Regret = max
θ

T∑
t=1

θ>xt · 1{θ>xt ≤ vt} − pt · 1{pt ≤ vt}

3. Quantum states (?): Probing a buyer if he will buy at a
certain price shares similarities with probing a quantum state
with a linear measurement.

Lower bounds and Open Problems

1. A lower bound of Ω(d log logT) can be derived from
embedding d independent instances of the 1-dimensional
problem (feature vectors are coordinate vectors).

2. Other applications of multi-dimensional binary search.

3. Stochastic setting: θ ∼ F , x ∼ D.

Thanks !

