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Idea: Optimize against a distribution.



Bayes-Nash solution concept

• Bayes-Nash models the uncertainty of 
other players about valuations

• Values vi are independent random vars

• Optimize against a distribution

Goal: bound the Bayes-Nash

Price of Anarchy 



Bayes-Nash solution concept

Thm: Bayes-Nash PoA ≤ 8

• Bayes-Nash models the uncertainty of 
other players about valuations

• Values vi are independent random vars

• Optimize against a distribution



Model

• n advertisers and n slots

• vi ~ Vi (valuations distribution)

• player i knows vi and Vj for j ≠ i

• Strategy: bidding function bi(vi)

• Assumption: bi(vi) ≤ vi
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Model

Vivi ~ αjbi(vi)

j = σ(i)i = π(j)

ui(b) = ασ(i) ( vi - bπ(σ(i) + 1))
Utility of player i :

σ = π-1



Model

Vivi ~ αjbi(vi)

j = σ(i)i = π(j)

ui(b) = ασ(i) ( vi - bπ(σ(i) + 1))
Utility of player i :

next highest bid



Model

Vivi ~ αjbi(vi)

j = σ(i)i = π(j)

E[ui(bi,b-i)|vi] ≥ E[ui(b’i,b-i)|vi]  

Bayes-Nash equilibrium:



Model

Vivi ~ αjbi(vi)

j = σ(i)i = π(j)

E[ui(bi,b-i)|vi] ≥ E[ui(b’i,b-i)|vi]  

Bayes-Nash equilibrium:

Expectation over v-i



vi are random variables
μ(i) = slot that player i occupies in

Opt (also a random variable)

Bayes-Nash PoA =

Bayes-Nash Equilibrium

E[∑i vi αμ(i)]

E[∑i vi ασ(i)]



Related results

• [PL-Tardos 09] prove a bound of 1.618 
for (full information) PoA of GSP.

• [EOS] [Varian]  analyze full information 
setting

• [Gomes-Sweeney 09] study Bayes-Nash 
equilibria of GSP and characterize 
symmetric equilibria. 



How was pure PoA proved?
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• We need a structural characterization



How was pure PoA proved?

αi

v π(i) αj

v π(j)

• We need a structural characterization

αjv π(j)+αivπ(i) ≥ αivπ(j)



New Structural Characterization

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Lemma:



New Structural Characterization

E[∑i vi απ(i)] ≥ (1/8) E[∑i vi αμ(i)]

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Lemma:



Main Theorem

SW = (1/2) E[∑i αi vπ(i) + ασ(i) vi] =
= (1/2) E[∑i αμ(i) vπ(μ(i)) + ασ(i) vi] =
= (1/2) E[∑i E[αμ(i) vπ(μ(i)) |vi]+ vi E[ασ(i)|vi] ] 
≥ (1/8) E[∑i vi αμ(i)]

Proof of main theorem:

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Lemma:



New Structural Characterization

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Lemma:

• Find the right deviation.

• But player i doesn’t know his true slot

• Solution: try all slots

How to prove it ?



New Structural Characterization

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Lemma:

• Player i gets k or better if he bids > bπ
i
(k)

• But this is a random variable …

• Deviation bid: 2 E[bπ
i
(k) |vi, μ(i) = k]

• Gets slot k with ½ probability (Markov)

How to prove it ?



New Structural Characterization

• also gets slot j ≤ k whenever μ(i) = j :                                        
2 E[bπ

i
(k) |vi, μ(i) = k] decreases with k 

(here we use independence)

• Write Nash inequalities for those 
deviations:

How to prove it ?

viE[ασ(i)|vi] ≥ Σj≥k ½ P(μ(i)=k|vi) αj (vi - Bk), k

μ (i)|



New Structural Characterization

• Smart Dual averaging the expression:

• Maintain payments small and value large

How to prove it ?

viE[ασ(i)|vi] ≥ Σj≥k ½ P(μ(i)=k|vi) αj (vi - Bk) , k

viE[ασ(i)|vi] + E[αμ(i) vπμ (i)|vi] ≥ ¼ viE[αμ(i)|vi]

Structural characterization:



New Structural Characterization

• Dual averaging the expression:

• Maintain payments small and value large

How to prove it ?

viE[ασ(i)|vi] ≥ Σj≥k ½ P(μ(i)=k|vi) αj (vi - Bk)

Not a smoothness proof.



Conclusion

• Constant bound for Bayes-Nash PoA

• Uniform bounds across all distributions

• Future directions:

• Improve the constant

• Get rid of independence


