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Auction Mechanisms

GSP
- Simple and Natural
- Good balance between

revenue and social welfare

- Not truthful
- Doesn’t maximize Social
Welfare

Myerson’s
MechanismVCG Reserve 

prices



Main Result

Under some assumptions, any Nash 
equilibrium in GSP is within a factor of
1.618 to the optimal social welfare. 
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Golden ratio:

Today we prove a factor of 2. 



Model

… …
• n advertisers and 

n slots
• Each advertiser 

has a value vi

• Each advertiser 
submits a bid bi

• Each slot has a 
click-through-
rate αi
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Model

… …
• Advertisers are 

ordered by bids 
and assigned to 
slots

• They are charged 
the next highest 
bid
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Model

… …
• Utility of player i

when assigned to 
slot j:
ui = αj(vi – bπ(j+1))

• Allocation π
π(j) is the bidder  
allocated in slot j
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Separable Click Through Rates

… …
• More general 

model

• Quality score γ

• Same bounds

• Today: stick with 
simplest model
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Nash Equilibrium

• A set of bids       
(b1, …, bn) and its 
corresponding 
assignment π is a 
Nash equilibrium if:

αi ( vπ(i) – bπ(i+1) ) ≥ αj ( vπ(i) – bπ(j) )     j < i
αi ( vπ(i) – bπ(i+1) ) ≥ αj ( vπ(i) – bπ(j+1) )   j > i

αi

v π(i)



Nash Equilibrium

• A set of bids (b1, …, bn) and its 
corresponding assignment π is a Nash 
equilibrium if:

αi ( vπ(i) – bπ(i+1) ) ≥ αj ( vπ(i) – bπ(j) )     j < i
αi ( vπ(i) – bπ(i+1) ) ≥ αj ( vπ(i) – bπ(j+1) )   j > i

• Social Welfare of an assignment:

SW = ∑j αj vπ(j)



There are good equilibria…

• Theorem [Edelman & Ostrovsky & 
Schwarz, Varian]: There is always a 
Nash equilibrium for GSP maximizing 
social welfare.
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… and bad equilibria

vibi αi

1

r

1

0

0

1-r

This is a Nash equilibrium with Social Welfare = r.
Optimum Social Welfare = 1.

Arbitrarily large gap: 1/r  ∞

But this configuration is very unnatural, since the 
second player is taking a lot of risk.



Conservative Assumption

• Assuming bidders are conservative, i.e., 
no one bids above its valuation:

we can prove that each Nash is within a 
factor of 1.618 to the optimal.

bi ≤ vi

Price of anarchy:
SW (OPT)

SW(Nash)



Conservative Assumption

• Assuming bidders are conservative, i.e., 
no one bids above its valuation:

we can prove that each Nash is within a 
factor of 1.618 to the optimal.

• Related result: [Lahaie] proves a bound 
on the price of anarchy supposing a good 
separation of the click-through-rates.

bi ≤ vi



Weakly feasible assignment

Lemma: If π is an allocation in a Nash 
equilibrium under the conservative 
assumption, then:
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Weakly feasible assignment

Lemma: If π is an allocation in a Nash 
equilibrium under the conservative 
assumption, then:

αj
αi

vπ(j)

vπ(i)+ ≥ 1

Proof: Need to prove only if i < j and π(i) 
> π(j). It is a combination of 3 relations:

αj ( vπ(j) – bπ(j+1) ) ≥ αi ( vπ(j) – bπ(i) )   [ Nash ]

bπ(j+1) ≥ 0 bπ(i)  ≤ vπ(i) [conservative] 



Some intuition…

αj
αi

vπ(j)

vπ(i)+ ≥ 1

• If values vi are very close then their 
order doesn’t influence social welfare 
much

• If values vi are well separated, then 
permutations producing bad social 
welfare are not weakly feasible

More symmetric and easy to use.



Factor of 2

Theorem: Any conservative Nash 
equilibrium is within a factor of 2 to the 
optimum.

Theorem: Any weakly feasible 
assignment is within a factor of 2 to the 
optimum.



Factor of 2

Proof: Induction on the number of slots.

… …

i

1

j

1 By the lemma:
αi
α1 v1

vj ≥
1

2
≥
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or

In the first case, 
remove bidder 1 and 
slot i and apply 
inductive hypothesis



Factor of 2

Proof: Applying the induction hypothesis:.

∑k≠iαkvπ(k)  ≥ ½ (α2v1 + … + αivi-1 + αi+1vi+1 + … + αnvn) 
≥ ½ (α2v2 + … + αivi + αi+1vi+1 + … + αnvn)

∑kαkvπ(k)  = αiv1 + ∑k≠jαkvπ(k) ≥ ½ α1v1 + ½ ∑k>1αkvk

Using the Lemma in its full potential 
gives us the 1.618 bound. 



What else can we do:

• Bound of 1.618

• Same bounds for separable click-
through-rates: quality score

• Similar bounds for γ-conservative
bidders: γbi ≤ vi


