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Next generation of ad auction

Classic auctions found their way to the web
Designed for different domains: art, spectrum, ...

Internet ad auctions are different: repeated and
the buyer cares about the aggregate result.

Why use dynamic auctions ?

Putting Auction Theory
to Work

Can improve both revenue and efficiency

over static auctions (no tradeoffs)

Can generate arbitrarily more revenue than static auctions.
Combines the best of real time auctions and guaranteed
contracts.



Towards practical dynamic auctions

e Current state:
e beautiful mathematical theory |...]
e polynomial time algorithms [PPPR], |[ADH]
e understanding of competition complexity [LP]

e Barriers to a practical implementation:
e DP / LP solutions are not scalable
e relies on accurate forecasts
e assumes too much of buyer rationality / knowledge



Repeated Auctions Model

e Single buyer model

e For timestept =1...T
item arrives (ad impression)

buyer observes his type v; ~ F}
(sellers <- public info, buyer <- public info + private cookies)

agent reports value Uy
allocation with probability z:(01..;) and pays p:(01.¢)
buyer gets utility u,* = v;xe(01.) — pe(01.4)

e Buyer wants to maximize continuation utilities

u;lgjt (@1..75; Fl..T) + 4:Ft_|_1,.T {SZ—H{ U:T (@1..7'; Fl..T)}




Design Space

e The auction is represented by allocation and payments:
Tt - @t X (A@)T — [O, 1] Zlft<@1”t;F1”T)
pe 1 O x (AG)T = R, pe(01..¢5 F1.7)

e (Constraints:
e Dynamic Incentive Compatibility (DIC)

vp € argmaxy U, (U ...) +Ep,, [Zfztﬂ Ul (g . . .

e Ex-post Individual Rationality (ep-IR) >_;ut >0

o Objective function: REV™(Fi..7) = maxEr, . [>, pe(vi..¢)]




Cassandra’s curse

Optimal mechanism requires seller to know all
distributions in advance (to solve the DP).
The definition of DIC require buyer and seller
to agree on distributions Fiy1, Fiio, ..., Fp .
Can we get mechanism that doesn't require

common knowledge about the future 7

DIC:

vy € argmaxy, uy (O ...) + Er (3 g ul (8]
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Super-DIC: for any beliefs Ft+1.

(o8

T

. ﬂ T .
v € argmaxg Uy (0...) +Ep Dy udm (0]

Theorem (Cassandra’s curse): L

nder super-DIC the

revenue optimal mechanism is t

ne optimal static auction.



Non-Clairvoyance

e Non-Clairvoyance: mechanism is measurable with respect to

ie. U1, ¢, I 4 ZEt(UL.t; F1..t)7pt(v1..t; Fl..t)

e Entangled design: consider two items sequences:

@ # (@ @

the non-clairvoyant mechanism needs to use the same rule for
item 1. The clairvoyant can use different rules depending on
what comes next.

e DIC for Non-Clairvoyant: buyers don't need to know the future
to check DIC. The only requirement is that distribution £¢
will be common knowledge in step t.
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Non Clairvoyant Revenue Approx

e Benchmark: the optimal dynamic mechanism that knows
all the distributions REV™ (Fy. 7).

o A NonClairvoyant auction is an a-approximation if
for all distributions I} 7 we have

REV(F. r) > aREV*(Fi. 1)



Non Clairvoyant Revenue Approx

Theorem: Every non-clairvoyant policy is at most a 1/2-
approximation to the optimal clairvoyant revenue.

Theorem: For multiple buyers there is a non-clairvoyant

policy that is at least 1/5-approx to the opt

clairvoyant.

Theorem: Can be improved to 1/2 for two periods and for
1/3 for one buyer and multiple periods.



Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is “isomorphic”
to a bank account mechanism.

o Keeps a state variable b; (balance) for each buyer

e Chooses a per-period IC mechanism based on balance

T¢(Vt, bt ), pe(vg, by)
with the balance-independence property

‘E[”Ut.fl?t(?)t, bt) — pt(Ut, bt>] = const > 0

e Updates balance:
0 < by < by + |vexs — Di]




Technique: Bank Account Mechanisms

Theorem: Every non-clairvoyant policy is “isomorphic”

Other nice properties:

o framework to design and prove lower bounds on
dynamic mechanisms

e computationally efficient (multi-buyer, multi-item)

e no pre-processing required (LP or DP)



1/3-approximation policy

Keep a variable b called balance initialized to zero.
For every period t, receive an item with distribution F}
Sell 1/3 of the item with each of the following auctions:

e Myerson's auction for F;

e Give the item for free and increment balance b = b + v

o Forf =min(b,Ep, |v¢])
charge / before the buyer can see the item

post a price of 7 such that E(v; — )" = f
decrement balance b =0 — f
Balance independence property: E[utility] is balance independent.




Extension to Multiple buyers

Single buyers (1/3 approx) Multiple buyers (1/5 approx)
1/3 item: Myerson 1/3 item: Myerson
1/3 item: Give for free 2/3 item: Second price auction

1/3 item: Dynamic posted price 2/3 item: Dynamic money
burning auction [HR]
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