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Abstract

We provide an algorithm with regret O(Cd log log T ) for contextual pricing with
C corrupted rounds, improving over the previous bound of O(d3C log2(T )) of
Krishnamurthy et al. (2020). The result is based on a reduction that calls the uncor-
rupted algorithm as a black-box, unlike the previous approach that modifies the
inner workings of the uncorrupted algorithm. As a result, it leads to a conceptually
simpler algorithm.
Finally, we provide a lower bound ruling out a O(C + d log log T ) algorithm. This
shows that robustifying contextual pricing is harder than robustifying contextual
search with ϵ-ball losses, for which it is possible to design algorithms where
corruptions add only an extra additive term C to the regret.

1 Introduction

In the contextual pricing problem, the seller is a learner who, in each round, gets a different product
described by a feature vector xt, for which it then posts a price pt. Typically, the buyer purchases
the product if its valuation (which is a function vt(xt) of the feature vector, and a priori unknown
to the seller) is above this price. All the seller observes, after posting the price, is whether the
buyer purchases the product or not. The goal of the learner (i.e., seller) is to maximize their revenue∑

t pt1(item t sold). As usual in pricing problems, the learner faces the exploration/exploitation
trade-off: it can “explore” by setting aggressive prices that allow it to learn about the buyer’s valuation,
but then it risks losing the sale; or it can “exploit” by setting conservative prices that guarantee a sale,
but potentially get a suboptimal revenue. In the revenue management literature, this is referred to as
the learn-and-earn problem.

Such pricing problems pose two main challenges:

(i) we only observe binary feedback (sale or no-sale), but do not directly observe the loss in
each round;

(ii) the loss function is asymmetric and discontinuous: while under-pricing an item by an amount
x will result in a sale with loss x with respect to the best possible revenue, over-pricing will
cause the buyer not to purchase the produce and incur a large constant loss.

For the single-dimensional non-contextual version of this problem, the seminal paper of Kleinberg
and Leighton (2003) identifies the best way to handle this asymmetry, obtaining the optimal regret
of Θ(log log T ). Since then, the Kleinberg and Leighton (2003) paper has been extended to the
d-dimensional contextual case by a series of papers that have obtained increasingly better bounds: the
work of Cohen et al. (2016) gave O(d2 log T ), Leme and Schneider (2018) showed O(d4 log log T ),
and finally Liu et al. (2021) gave O(d log log T ), matching the lower bound.

So far, our discussion has described the realizable and noise-free version of the problem: the buyer
has a fixed value vt, which is a constant in [0, 1] in the non-contextual case, or a linear function
vt(xt) = ⟨v∗, xt⟩ in the contextual case. Moreover, the purchasing decision is based on whether
the posted price pt is above or below this value vt. There has been considerable work extending the
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model to handle stochastic noise models: see, e.g., Javanmard and Nazerzadeh (2016); Cohen et al.
(2016); Javanmard (2017); Shah et al. (2019); Liu et al. (2021); Xu and Wang (2021, 2022).

Comparatively, adversarial noise models (also known as corrupted feedback) are much less under-
stood. The study of corrupted feedback for contextual pricing was pioneered by Krishnamurthy et al.
(2020). In this model, there is still a ground truth value vt and the buyer again makes most of the
purchasing decisions based on whether pt ≤ vt. However, for a certain number of rounds C, the
decisions are arbitrary. This can model that buyers often make irrational choices (as in Krishnamurthy
et al. (2020)) or that an adversary can corrupt the feedback given to the learner (as in Lykouris et al.
(2018); Paes Leme et al. (2022)).

1.1 Our Results

We give improved algorithms and lower bounds for the contextual pricing problem in settings with
corrupted feedback.

Our Results: Upper Bounds. Our paper proposes a reduction from corrupted to uncorrupted case
in contextual pricing and through that, obtains conceptually simpler algorithms with improved regret.
Our results are the following:

1. For the known corruption setting, We give an algorithm that achieves a regret of

O((C + 1) · d log log T ).

This improves over the O(Cd3 log2 T ) bound of Krishnamurthy et al. (2020).

2. For the setting of unknown corruption C with a known upper bound U (i.e., we are promised
that the actual number of corruptions C is at most U ), we give an algorithm with regret

O((C + logU) · d log log T ).

This improves over the regret bound of O((C + logU)d3 log2 T ) given by Krishnamurthy
et al. (2020).

At a high level, our approach is to execute several parallel copies of an uncorrupted contextual pricing
algorithm and query each of them in each round for advice on which price to set, choosing the
maximum of such prices to post. In the case of a sale, we choose a random algorithm in the pool to
update. We set the update probabilities in a way that one of the parallel copies will never observe
a corruption with high probability. The final step is to bound the regret of the entire algorithm by
comparing it with the regret of the instance that never observes a corruption.

The main observation is to exploit the following property of the pricing loss: if we choose the
maximum price and it results in a sale, the loss incurred it at most the loss of any given algorithm.
This allows us to charge the loss of the multiple algorithms maintained by our algorithm to the loss of
the benchmark, i.e., the single optimal algorithm that observes uncorrupted feedback.

Our Results: Lower Bounds. The lower bound on the regret for the uncorrupted case is
Ω(d log log T ), so the best regret bound one can hope for is O(C + d log log T ). For the related
problem of contextual search with ϵ-ball loss (i.e., with a different loss function), Paes Leme et al.
(2022) show a regret bound of O(C + d log(1/ϵ)) which adds only an additive C overhead with
respect to the tight bound of O(d log(1/ϵ)) for the uncorrupted case. The natural question is: can we
hope to achieve algorithms with regret O(C + d log log T )?

In Theorem 5.2 we show this is not possible: we give a lower bound ruling out algorithms with
regret O(C + d log log T ), and hence showing that robustifying contextual pricing is harder than
robustifying other contextual search problems (e.g., for the ϵ-ball loss function).

These lower bounds also inspire new algorithmic results: using the ideas in the lower bound, we are
able to provide in Theorem 6.1 a O(C + log T )-regret algorithm for the corrupted non-contextual
case when corruptions are one-sided: i.e., the adversary is allowed to corrupt no-sales to sales but not
the other way round.

2



1.2 Related Work

Our paper lies in the intersection of the literature of learning to price, contextual search, and learning
with corrupted feedback. Learning to price was initiated by Kleinberg and Leighton (2003) who
provide matching upper and lower bounds for the regret achievable by a seller posting prices to
a buyer under different assumptions on the buyer’s valuation. This setting was later extended to
auctions Mohri and Medina (2014); Cesa-Bianchi et al. (2014) and strategic agents Amin et al. (2013);
Drutsa (2017).

Contextual pricing is a generalization of learning to price to higher dimensional settings, which is
a part of a larger class of problems known as contextual search which explore binary feedback in
higher dimensional settings for various loss functions. A long line of paper starting with Amin et al.
(2014) provide increasingly better bounds for contextual search with the pricing loss and other types
of losses: Cohen et al. (2016); Lobel et al. (2018); Leme and Schneider (2018); Liu et al. (2021).

Finally, learning with corruptions correspond to the study of settings in which the data follows a
predictable pattern with the exception of a few examples whose label is arbitrary. A very early
example is called Ulam’s game (Ulam (1976)) in which a learner tried to identify a number on a
sorted list using comparison queries but C of those queries can have erroneous answers. Upper and
lower bounds to this setting were given by Rivest et al. (1978).

There has been recent interest in providing corruption robust bounds to contextual search problems.
This was pioneered by Krishnamurthy et al. (2020) who study contextual pricing in the presence of
corruptions—the exact same setting as in our paper. Recently, Paes Leme et al. (2022) studies the
contextual search problem under the symmetric and ϵ-ball losses with corrupted feedback.

2 Model and Definitions

(Uncorrupted) Contextual Pricing In the contextual pricing problem, the buyer’s valuation is
represented by a vector v∗ ∈ Bd = {x ∈ Rd; ∥x∥2 ≤ 1} that is unknown to the learner. In each
round t = 1 . . . T , the learner will be presented an item described by a feature vector xt ∈ B and
will have the opportunity to set a price pt for the buyer. In the standard (un-corrupted) model, the
buyer buys if the value ⟨v∗, xt⟩ ≥ pt in which case the learner obtains revenue pt; otherwise, if the
value ⟨v∗, xt⟩ < pt then the buyer doesn’t buy, in which case the learner obtains revenue zero. As
usual, the learner is faced with the trade-off of proposing aggressive prices to learn more information
about v∗, and setting conservative prices that will be guaranteed to sell and generate revenue. To
summarize, the feedback σt ∈ {0, 1} and the loss ℓt are given by:

σt = 1{vt ≥ pt} ℓt(pt; vt) := σtpt − vt

for vt = ⟨v∗, xt⟩. Liu et al. (2021) recently showed matching upper and lower bounds of
O(d log log T ) on the total loss

∑
t ℓt (also referred to as the regret) which is a contextual ver-

sion of the algorithm of Kleinberg and Leighton (2003).

Corrupted Feedback In the corrupted version of this problem, the learner has access to feedback
σt ∈ {0, 1}. The corruption level C is defined to be the number of periods for which the feedback
doesn’t match 1{vt ≥ pt}, i.e.,

C = |{t ∈ [T ];σt ̸= 1{vt ≥ pt}}|

In the known corruption case, the algorithm is given access to C. In the unknown corruption case,
the algorithm knows an upper bound U on C (e.g., U = T in the worst case), and the regret bounds
can depend on both C (the actual corruption), and on U (the upper bound, ideally logarithmically or
better).

3 Reduction in the Known-Corruption Setting

We will present a reduction from the uncorrupted setting to the corrupted setting for contextual
pricing. In this reduction, we will treat the uncorrupted algorithm as a black-box described by two
subroutines: Query(xt) which returns a price pt and Update(xt, pt, σt). Given those subroutines,
the uncorrupted algorithm can be described as follows: (i) Query(xt) returns a price pt and doesn’t
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modify the internal state of the algorithm; (ii) the learner posts price pt and observes feedback σt;
(iii) Update(xt, pt, σt) updates the state of the algorithm.

Given an algorithm defined by Query(xt) and Update(xt, pt, σt) and q ∈ [0, 1] we define
its q-slowed-down version as the algorithm that prices according to Query(xt) but only calls
Update(xt, pt, σt) with probability qt ≥ q upon receiving feedback. With remaining probabil-
ity the state of the algorithm is unchanged.
Theorem 3.1. If there exists an uncorrupted algorithm with loss at most R(T ) such that:

1. its suggested price results in at most R(T ) no sales

2. the loss of its q-slowed-down version is at most R(T )/q

then there exists an algorithm with total loss at most O(C ·R(T )) in the corrupted setting with known
corruptions.

Algorithm Description. We instantiate C + 1 copies of the uncorrupted algorithm denoting the
i-th copy by Queryi(xt) and Updatei(xt, pt, σt). We also maintain a set of active instances A that
is initially {1, 2, . . . , C + 1}. Now, for each t = 1 . . . T we:

• obtain the price proposed by each algorithm pt,i = Queryi(xt).
• choose the largest price pt = maxi∈A pt,i to post.
• observe feedback σt

– if σt = 0 (no-sale), let i ∈ A be the index such that pt = pt,i. Then call
Updatei(xt, pt, σt). If the i-th algorithm was updated with more than R(T ) no sales,
then remove i from the active set A.

– if σt = 1 (sale), then let i be a random index from A and call Updatei(xt, pt, σt).

Proof. First we observe that there is at least one index i∗ that never observes a corruption, hence the
guarantees of the uncorrupted algorithm apply to it. By the first assumption in Theorem 3.1, this
algorithm is never eliminated from the the active set.

To bound the total loss, we first observe that the total loss from periods which resulted in a no-sale is
at most (C + 1)R(T ) since each copy of the algorithm can generate at most R(T ) no-sales until it is
eliminated.

Now, to bound the total loss from periods in which there was a sale, observe that if the maximum
price pt resulted in a sale, then the price under i∗ would also have resulted in a sale since pt,i∗ ≤ pt
and furthermore, the loss ℓ(pt; vt) ≤ ℓ(pt,i∗ ; vt). Hence, the expected loss from the periods resulting
in sales can be upper bounded by the loss of a (C + 1)−1-slowed-down version of the copy i∗ of the
algorithm which is (C + 1) ·R(T ).

3.1 Analysis of the Slowed Down Algorithm

To conclude the proof, we show that the uncorrupted algorithm of Liu et al. (2021) satisfies the
conditions of properties in Theorem 3.1. We start by giving an overview of that procedure:

Summary of the algorithm of Liu et al. (2021) The algorithm keeps a set St ⊆ B of vectors
v consistent with the feedback observed so far. It also keeps k = log log T potential functions
Φ1(St), . . . ,Φk(St) associated with the doubly-exponential intervals Ij = [1/22

j

, 1/22
j−1

] for
j > 1 and I1 = [1/4, 1] for j = 1. The potential functions depend only on the set St.

In each round t, the algorithm computes the width

width(St;xt) = max
v∈St

⟨v, xt⟩ − min
v∈St

⟨v, xt⟩

If the width is below 1/T , the algorithm prices at the lower bound minv∈St⟨v, xt⟩ guaranteeing a
sale with loss at most 1/T . Otherwise, we choose an index j such that width(St;xt) ∈ Ij . The
algorithm then chooses a price pt as a function of j, St and xt and update the set St to

St+1 = {v ∈ St; (2σt − 1)(⟨v, xt⟩ − pt) ≥ 0}
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• if there is a sale, then the loss is at most width(St, xt) = O(1/22
j

) and the j-th potential
decreases by Φj(St+1) ≤ (1 − O(1/22

j

)) · Φj(St+1). The remaining potentials weakly
decrease.

• if there is no sale, then the loss is at most 1 and the j-th potential decreases by Φj(St+1) ≤
O(1/22

j

) · Φj(St+1). The remaining potentials weakly decrease.

Finally, the potentials are such that

Φj(St) ≥ 1/2Ω(d·2j),

which bounds the number of possible sales and no-sales for width(St;xt) ≥ 1/T . In particular, there
can be at most

Ns
j := O(d log d22

j−1

+ 2j+2j−1

)

sales and
Nn

j := O(d log d/2j−1 + d)

no-sales whenever the width is in the interval Ij . This leads to the overall bound of∑
j

Nn
j + (1/22

j

) ·Ns
j = O(d log log T + d log d).

Lemma 3.2. The uncorrupted algorithm of Liu et al. (2021) satisfies the properties in Theorem 3.1
for R(T ) = O(d log log T + d log d).

Proof. The first property is trivially satisfied since no-sales are accounted as a loss of 1 in the analysis
above. Now, to analyze the q-slowed down algorithm we can keep the same potentials Φj(St) with
the difference that they are updated with probability q. The time between two updates of each
potential is a geometric random variable with probability q. So the expected number queries with
width in Ij with a sale is Ns

j /q, for Ns
j defined above in the algorithm summary. The total loss from

sales is therefore at most (Ns
j /q) · 1/22

j

in expectation. The lemma follows from the fact that∑
j

Ns
j · 1/22

j

≤ O(d log log T + d log d)

by the analysis of the uncorrupted algorithm.

4 Unknown-Corruption Setting

Here we assume that we have only an upper bound U on the number of corruptions, i.e., we know
that C ≤ U but don’t know the value of C. We provide an algorithm that depends linearly on C (the
actual corruptions) but only logarithmically on U . The ideas will be to use a version of the multi-layer
approach of Lykouris et al. (2018), in which O(logU) copies of the original uncorrupted algorithm
are run in parallel and each copy is updated with exponentially smaller probability. The copies in
which the update probability is smaller than 1/C are unlikely to experience a corruption.

Algorithm Description For a parameter δ ∈ [0, 1], we instantiate k = log(U/δ) copies of the
uncorrupted algorithm denoting the i-th copy by Queryi(xt) and Updatei(xt, pt, σt). We also
maintain a set of active instances A that is initially {1, 2, . . . , k}. Now, for each t = 1 . . . T we:

• obtain the price proposed by each algorithm pt,i = Queryi(xt).

• choose the largest price pt = maxi∈A pt,i to post.

• observe feedback σt

– if σt = 0 (no-sale), let i ∈ A be the index such that pt = pt,i. Then call
Updatei(xt, pt, σt). If the i-th algorithm was updated with more than R(T ) no sales,
then remove all indices smaller or equal to i from the active set A.

– if σt = 1 (sale), then choose an index i with probability 1/2i and call
Updatei(xt, pt, σt).
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We note that the algorithm only differs from the known-corruption case in the probabilities used
to update each algorithm. Also note that with non-zero probability we update algorithm that is no
longer active. Such update is clearly useless, but we do so in order to preserve the probability that the
still-active algorithms are updated.
Theorem 4.1. Given an uncorrupted algorithm wiht regret R(T ) following the assumptions of
Theorem 3.1 and a known upper bound U on the (unknown) level of corruption C, there for every
δ > 0, there exists an algorithm that with probability 1 − δ has total loss at most O((C/δ) +
log(U/δ)) ·R(T )).

Proof. Let i∗ be the index such that C/(2δ) ≤ 2i
∗ ≤ C/δ. For each corrupted round t we update

i∗ with probability O(δ/C). Across all the rounds, the probability it experiences no corruption is
(1− δ/C)C = 1−O(δ). With that probability, this algorithm is never eliminated from the active set
A and the bounds from the uncorrupted algorithm will hold.

We again bound the total loss of sales and no-sales separately. Since each algorithm can incur at most
R(T ) no sales before it is eliminated, the total loss from no-sales is at most log(U/δ) ·R(T ).

To bound the loss from sales, observe that if the maximum price resulted in a sale, then pt,i∗ ≤ pt
must also result in a sale, so the loss is at most the loss of the loss of a (δ/C)-slowed down version of
the uncorrupted algorithm with is at most (C/δ) ·R(T ).

5 Lower Bound

We will study lower bounds for the special case of d = 1 in which the valuation is a scalar and is
non-contextual. This is the original setting of Kleinberg and Leighton (2003). The lower bound for
the uncorrupted pricing problem is Ω(log log T ). The best upper bound we can hope for (even with a
known number of corruptions C) is O(C + log log T ). The following lemma rules out this bound by
a reduction to the lower bound for the online product design problem given by Emamjomeh-Zadeh
et al. (2021).
Theorem 5.1. No deterministic algorithm for the one-dimensional contextual pricing problem with
(known) corrupted feedback can guarantee total loss at most O(C + log log T ). In particular, when
C = Θ(log log T ), any deterministic algorithm must incur at least Ω(C2/ logC) total loss.

We will prove Theorem 5.1 via reduction to the previously studied problem of online product design
by Emamjomeh-Zadeh et al. (2021). Online product design is a variant of contextual pricing where
there are n different possible items, each with an unknown (one-dimensional) true value vi ∈ [0, 1].
At each round t ∈ [T ], the learner can choose an item it ∈ [d] and set a price pt ∈ [0, 1] for this item.
If pt ≤ vit , the item sells at this price and the learner obtains revenue pt, otherwise the item goes
unsold and the learner obtains revenue 0. The learner would like to minimize their regret compared
to their optimal strategy, which is to always select the item i∗ with the largest value vi∗ and price it at
its value.

Emamjomeh-Zadeh et al. (2021) present an algorithm for this problem (a parallelization of the
algorithm of Kleinberg and Leighton (2003)) that incurs at most O(n log log T ) regret. More
relevantly for us, they show that this multiplicative dependence is necessary by establishing the
following lower bound.
Theorem 5.2 (Theorem 8 of Emamjomeh-Zadeh et al. (2021)). If n = Θ(log log T ), then any
deterministic algorithm for online product design must incur Ω(n2/ log n) regret in the worst case.

We will show that it is possible to reduce the problem of online product design to the problem of
contextual pricing with corruptions. In particular, we will show that any algorithm for contextual
pricing with C corruptions can be applied to get an equivalent regret bound in the C-item online
product design problem.
Lemma 5.3. If there exists a deterministic algorithm incurring at most R(C, T ) regret for the
contextual pricing problem with C corruptions, then there exists a deterministic algorithm incurring
at most R(C, T ) regret for the online product design problem with n = C + 1 items.

Proof. Consider the following algorithm for online product design (that uses the corrupted contextual
pricing algorithm as a black box). At any point it will maintain a state consisting of n+ 1 numbers:
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x ∈ [0, 1], the lowest price that any item has ever sold for, and y1, y2, . . . , yn ∈ [0, 1], where yi is
the highest price that item i has not successfully sold for. Initially, x is initialized to 0 and all yi are
initialized to 1.

The algorithm repeats the following procedure for T steps:

1. Choose an item it ∈ argmaxi∈[n] yi with a maximal unsold price.

2. Ask the corrupted contextual pricing subroutine for a query price pt.

3. Post price pt for item it.

4. If item it sells at this price, update x ← max(x, pt), and report that the item sold to the
contextual pricing subroutine.

5. If item it fails to sell at this price, update yit ← min(yit , pt), and report that the item failed
to sell to the contextual pricing subroutine.

We first argue that the feedback provided to the contextual pricing subroutine over the course of
this process must be consistent with some valid transcript for contextual pricing with at most C
corruptions. In particular, let Y be the maximum value of all yi at the end of the T rounds, and
consider the scenario where the true value of the item in the corrupted contextual pricing subroutine
is equal to Y − ϵ (for an arbitrary small ϵ > 0 guaranteeing Y − ϵ > x). We claim this is consistent
with all but at most n− 1 = C observations reported to this subroutine. To see this, assume without
loss of generality that Y is the value of y1 at the end of T rounds. We claim that any other item
can fail to sell at a price below Y at most once – once it does so, it updates its yi to a value below
Y , and would only be picked over y1 once y1 drops below Y (which it never does). Since there are
n− 1 = C other items, there are at most C such events like this, which would constitute corrupted
observations reported to the contextual pricing subroutine. On the other hand, since x remains below
Y throughout this process, we never report an error in the other direction (a sale at a price above Y ),
and hence these are the only such corruptions.

The regret of the corrupted contextual pricing subroutine under this scenario is given by

(Y − ϵ)T −
T∑

t=1

σtpt.

where, as before, we write σt = 1 if the item sells and σt = 0 otherwise. But now, note that the
maximum value of any item in the optimal product design instance is at most Y , so the regret incurred
by the online product design algorithm is at most

Y T −
T∑

t=1

σtpt.

It follows (by taking ϵ → 0) that any regret bound R(T ) for the corrupted contextual pricing
subroutine extends to this algorithm for online product design.

Proof of Theorem 5.1. Follows immediately from Theorem 5.2 and Lemma 5.3.

6 One Sided Error: the Cautious Buyer

Finally, we use the ideas of the lower bound to derive an algorithm with regret O(C + log T ) for
what we call an "cautious buyer", which is a buyer who may not buy even if the price is below their
value but at most C times. The buyer never buys above their value. This corresponds to a corrupted
setting with one-sided corruption: σt ≤ 1{vt ≥ pt}.
As in the previous section, we will state and prove this result in the non-contextual setting where the
buyer’s valuation can be expressed by a scalar v∗ ∈ [0, 1].

7



Theorem 6.1. There is a learning algorithm for posting a price to an cautious buyer (one-sided
corrupted feedback with at most C corruptions) with regret O(C + log T ).

The theorem will use the algorithm by Kirkpatrick and Gao (1990) to for the following problem:
consider a list of numbers [v1, . . . , vn], all in [0, 1], unknown to the learner. The learner can at each
time t choose an index it and price pt and query whether pit ≤ vi. The goal of the learner is to
identify an index i and a price p such that: vi ≥ p ≥ maxi vi − ϵ. Kirkpatrick and Gao (KG) provide
an algorithm to acomplish this task with O(n+ log(1/ϵ)) comparisons.

Proof. Apply the KG algorithm find the maximum of a list of C+1 numbers with parameter ϵ = 1/T .
For every query pit ≤ vi of the KG algorithm, respond with the result of a query pt ≤ v∗ to the
corrupted contextual pricing algorithm. Because the buyer is cautious, the buyer may not buy a
product even though the price is below v∗ hence the feedback for some items in the list will be
consistent with a value vi ≤ v∗ since the KG algorithm only queries prices above the last sale and
below the last no-sale for each item. For at least one of the items, however, the algorithm won’t
observe a corruption, so it will be able to identify the v∗ within a margin of ϵ = 1/T in O(C+ log T )
rounds. In such rounds, it will incur that much regret. From then on, the algorithm will incur at most
O(1/T ) regret per round.

Open Problems We note that the lower bound in Theorem 5.2 applies to the cautious buyer as
well, hence it is not possible to improve this bound to O(C + log log T ). However, we leave as an
open question whether a bound of O(C + log T ) is possible for a buyer with C corruptions in either
direction. Another interesting open direction is to provide a O(C + d log T ) algorithm for a cautious
buyer in the contextual setting.
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