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Auctions have become the standard way of allocating resources in electronic

markets. Two main reasons why designing auctions is hard are the need to

cope with strategic behavior of the agents, who will constantly adjust their bids

seeking more items at lower prices, and the fact that the environment is highly

dynamic and uncertain. Manymarket designs which became de-facto industrial

standards allow strategic manipulation by the agents, but nevertheless display

good behavior in practice. In this thesis, we analyze why such designs turned

out to be so successful despite strategic behavior and environment uncertainty.

Our goal is to learn from this analysis and to use the lessons learned to design

new auction mechanisms; as well as fine-tune the existing ones.

We illustrate this research line through the analysis and design of Ad Auc-

tions mechanisms. We do so by studying the equilibrium behavior of a game

induced by Ad Auctions, and show that all equilibria have good welfare and

revenue properties. Next, we present new Ad Auction designs that take into ac-

count richer features such as budgets, multiple keywords, heterogeneous slots

and online supply.
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CHAPTER 1

INTRODUCTION

Mechanism Design deals with the problem of designing algorithms that will

be deployed in settings where agents are strategic. In such settings, the algo-

rithm initially collects reports from a set of agents and uses those reports to

compute an outcome. Standard examples are internet marketplaces: in the sale

of internet advertisement, bids are elicited from potential advertisers and the

choice of which ad to display is based on the bids. Agents may have incentives

to overbid, or shade (decrease) their bids depending on the system used. The

main difficulty in such situation is how to set proper incentives for the agents.

Simplicity is an important goal in designingmechanisms and the lack thereof

is usually the main reason why mechanisms do not get adopted in practice.

There are two ways in which we desire mechanisms to be simple: (i) the de-

scription of the mechanism itself is simple and (ii) it is simple for the agents

participating in the mechanism.

This thesis focuses on designing simple and efficient mechanisms. We fo-

cus on sponsored search auctions, that is, auctions to sell advertisement space

next to search results, which have become the standard way to monetize web-

services and are responsible for moving tens of billions of dollars every year.

Besides being practically relevance, sponsored search is also a technically chal-

lenging setting and techniques developed for it generalize to many other sce-
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narios.

1.1 Comparing Algorithms in Strategic Settings

(or Mechanism Design for Algorithmists)

Traditional algorithm design consists of designing a procedure that maps an in-

put to an output (in a possibly randomized way) satisfying some constraints,

say polynomial running time. Given different algorithms, we compare them by

how they perform with respect to some objective function. This can be objec-

tively measured by the approximation ratio, which is the ratio between the objec-

tive the algorithm produces and the best possible objective. The closer to 1 this

ratio is, the better the algorithm performs.

One underlying assumption in this model is that the algorithm has direct ac-

cess to the input. In other words, the choice of the algorithm to be used does not

affect the input. While reasonable in most applications, this assumption breaks

in market settings. In such settings the input is distributed across many agents

who derive some benefit from the output. Each agent will respond to the algo-

rithm by manipulating the input to their benefit. Therefore, once an algorithm

is deployed, it will execute not on the real input but on a “manipulated” input,

which corresponds to the way agents will respond to the mechanism.

In order to study such settings, it is necessary to describe the way agents will

respond to a generic algorithm once it is deployed. This is done by describing a

solution concept, which maps a pair of input and algorithm to a set of “manipu-

lated inputs”. Themost common solution concept in the literature is the concept

of “Nash equilibrium”, which assumes that players will reach an equilibrium

2



where no agent can change his report and become better off. Other popular

solution concepts that will be discussed in the thesis are “Bayes-Nash equilib-

rium”, which incorporates uncertainty and “outcomes of no-regret dynamics”

which instead of assuming players converge to a particular equilibrium, studies

the outcomes during the learning process.

After the solution concept is fixed, how does one characterize a good algo-

rithm ? A natural generalization of the approximation ratio for strategic settings

is called the price of anarchy, which measures the worse ratio between the opti-

mal objective for a certain input and the objective of the output of the algorithm

on a corresponding “manipulated” input under the solution concept. The price

of anarchy measures the robustness of the algorithm with respect to strategic

behavior: in the worst case, how much can strategic manipulation harm the

objective considered. The closer it is to 1, the more robust the algorithm is.

Below, we will discuss twomain approaches to mechanism design:

The first approach is called truthful mechanism design, in which the designer

restricts its attention to a subclass of mechanisms (algorithms) that have the

truthtelling property under the considered solution concept, i.e., the manipu-

lated input is expected to be equal to the true input. If we find an algorithm

with this property, then the concepts of price of anarchy and approximation

ratio collapse, since the algorithm is guarantee to run in the correct input.

Truthful mechanisms are often complicated and it is often desirable to sacri-

fice truthfulness for simplicity, which is crucial for practical applications. This

leads us to the second approach, which is to design a mechanism that does not

have the truthtelling property and accept the algorithm will not run on the true

3



input, but on a manipulated input. This is interesting if one can provide guar-

antees that even though we are running the algorithm in the “wrong” input,

the output is a good solution with respect to the original input. We call it a

non-truthful mechanism.

1.2 The Main Inquiry of this Thesis

Ourmain inquiry in this thesis is to designmechanisms that are simple, yet have

good efficiency and revenue properties. We will look at this from two perspec-

tives: first we will analyze the Generalized Second Price (GSP) mechanism, a

design that has become incredibly successful in practice and widely adopted in

industry. We want to build a theory that explains why such mechanism turned

out to be so successful. Understanding why GSP is successful is important for

two reasons: first, it will allow us to apply the lessons learned to other settings.

Second, we will be able to fine-tune those mechanisms.

Secondly, we look at it from the design perspective. We will seek to design

new mechanisms for sponsored search incorporating features that are not na-

tively handled by the original GSP mechanism, such as the relation between

auctions for different search queries, budgets (financial constraints for the ad-

vertisers) or online supply (the fact that we need to allocate and price ads before

knowing the entire supply). We want to design new mechanisms keeping the

simplicity goal as much as we can. This perspective also aims to bring new

insights to the existing designs.

We believe those perspectives are two sides of the same coin: from one side,

we observe a successful story in practice and build a theory around it, and from

4



the other, we try to incorporate real-life features in our theory to bring it closer

to practice.

Analysis perspective: understanding the GSP auction The GSP mechanism

starts by collecting bids from the agents, which represent the amount they are

willing to pay for ad slots. Then it uses those bids to decide on how to allocate

ad slots and how much agents will pay for slots they get. This mechanism has

the interesting feature that agents might benefit from mis-reporting their value.

In other words, it is not a truthful mechanism. Yet, GSP is widely adopted and

seems to display good revenue and welfare behavior in practice.

It is intriguing that GSP is adopted even despite the existence of another

mechanism for the same setting — the VCG mechanism — which is truthful

and fully efficient. One can only speculate the reasons behind such choice. His-

torically, GSP was devised as an improvement over the Generalized First Price

Auction (GFP), also not truthful, used by Overture/Yahoo [34] to prevent the

bid volatility that was characteristic of GFP. This engineering decision produced

a very successful system that generates billions of dollars in revenue. Changing

a system of that scope implies a lot of risk, specially if it is in the core of the

company’s business model. This, combined with the practical success of GSP,

provides a compelling reason why GSP instead of the more theoretically sound

VCGmechanism.

The GSP mechanism might be preferable because is has a very simple de-

scription of the payment rules. Clarity in the description of the mechanism is a

desirable goal in large markets, since most participants are not auction experts

and should feel comfortable in participating nevertheless.
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In fact, the adoption of a non-truthful mechanism instead of a truthful coun-

terpart is not an isolated phenomenon. There is a beautiful and elegant theory

developed by Vickrey, Clarke and Groves [77, 23, 44] called the VCG-theory on

how to design truthful mechanism. Although elegant, it rarely finds its way to

practical applications, as it was remarked by Ausubel and Milgrom [10]:

“it is useful to think of the VCG theory as a lovely and elegant reference

point – but not as a likely real-world auction design. Better, more practical

procedures are needed.” (Ausubel and Milgrom, 2007, in The Lovely

but Lonely Vickrey Auction)

In many settings besides sponsored search, non-truthful mechanisms are the

standard. Most auctions in financial markets can be modeled by variants of

double auctions and uniform-price auction, which are non-truthful. In such

auctions, agents submit demand and supply at each given price and a price that

clears the market is computed. Truthtelling in such settings is sacrificed in favor

of more important properties such as budget balance [77, 65]. In settings like

combinatorial auctions, the truthful VCG design suffers from a series of prob-

lems discussed in Ausubel and Milgrom [10] and, in practice, designs like Core

Selecting Combinatorial Auctions are favored. See [28] for an overview and

[27] for an example in the UK Spectrum Auctions. The sale of electricity, which

is a multi-billion dollar market, is another good example. Nontruthful mecha-

nisms, such as Locational Marginal Pricing Mechanism (LMP), are preferred to

their truthful counterparts. See [78] for technical details and [25] for a detailed

exposition on the economics of such markets.

From this viewpoint, the study of the GSP mechanism provides a glimpse

on what seems to be a more general and widespread phenomenon.
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Design perspective: adding realistic constraints Traditional designs of spon-

sored search, such as GSP and VCG, do not explicitly handle budget constraints.

They also assume that different keywords are independent, i.e., the way an ad-

vertiser behavedwhile bidding for the keyword “car” is independent of the way

he bids for the keyword “tires”, even if the bids come from the same advertiser.

This independence breaks if advertisers have budget constraints, i.e., the total

amount of money they have to spend across all keywords is limited. Dollars

that are spent on the “car” keyword cannot later be spent on “tires”. This mo-

tivates us to analyze a richer model where advertisers have budget constraints

and bid across many different keywords.

We will also consider the fact that advertisers participate not in one but in

many auctions for the same keyword. In fact, each time a search is issued for a

particular keyword, the search engine runs an auction for that keyword. So, the

advertisers expect to participate in many such auctions but it is not clear how

many. On top of that, if advertisers have budget constraints, dollars spent on

one auction cannot be spent in future auctions.

We believe that it is important to design auctions that take those issues ex-

plicitly into account. On the one hand, techniques developed along the way

apply to a variety of settings, as routing, video on demand, matching markets,

... On the other hand, this research line produces insights that can feed into ex-

isting designs and make them more robust to budgets and uncertainty in the

supply.
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1.3 Analysis Approach to Sponsored Search

1.3.1 Sponsored Search Auctions and GSP

The sale of advertising space on the Internet, or Ad Auctions, is the primary

source of revenue for many providers of online services and corresponds. Ac-

cording to a recent report [36], $25.8 billion dollars were spent in online adver-

tisement in the US in 2010. The main part of this revenue comes from search

advertisement, in which search engines display ads alongside organic search

results. The success of this approach is due, in part, to the fact that providers

can tailor advertisements to the intentions of individual users, which can be in-

ferred from their search behavior. A search engine, for example, can choose to

display ads that synergize well with a query being searched. However, such

dynamic provision of content complicates the process of selling ad space to po-

tential advertisers. Each search query generates a new set of advertising space

to be sold, each with its own properties determining the applicability of differ-

ent advertisements, and these ads must be placed near-instantaneously.

The now-standard mechanism for resolving online search advertisement re-

quires that each advertiser places a bid that represents the maximum she would

be willing to pay if a user clicked her ad. These bids are then resolved in an

automated auction whenever ads are to be displayed. By far the most popular

bid-resolution method currently in use is the Generalized Second Price (GSP)

auction. Edelman et al. [34] and Varian [75] observe that truthtelling is not a

dominant strategy under GSP, and GSP auctions do not generally guarantee the

most efficient outcome (i.e., the outcome that maximizes social welfare). Nev-

ertheless, the use of GSP auctions has been extremely successful in practice.
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This leads to the main inquiry stated in the previous section: are there theoretical

properties of the Generalized Second Price auction that would explain its prevalence?

Edelman et al. [34] and Varian [75] provide a partial answer to this question by

showing that, in the full information setting, a GSP auction always has a Nash

equilibrium that has same allocation and payments as the VCGmechanism, and

therefore is efficient.

However, there are no guarantees that the particular equilibrium studied by

Edelman et al and Varian will be selected, since GSP has potentially many other

equilibria, many of which are not fully efficient. In such settings, the priceof an-

archy analysis is a powerful tool for quantifying the potential loss of efficiency

at equilibrium. In a setting without uncertainty, the price of anarchy is surpris-

ingly small, indicating a loss of at most 22% of the welfare. One should note

that, remarkably, the welfare loss of these auctions is bounded by a value that

does not depend on the number of players or the number of advertisements for

sale.

While the results on the full information model provide important insight

into the structure of the GSP auction, we will argue that the Generalized Sec-

ond Price auction is best modeled as a Bayesian game of partial information.

Modeling GSP as a full information game assumes that each auction is played

repeatedly with the same group of advertisers, and during such repeated play

the bids stabilize. The resulting stable set of bids is well modeled by a full infor-

mation Nash equilibrium. However, the set and types of players can vary sig-

nificantly between rounds of a GSP auction. Each query is unique, in the sense

that it is defined not only by the set of keywords invoked but also by the time

the query was performed, the location and history of the user, and many other

9



factors. Search engines take this into account by computing for each advertiser

and each query a quality score (or factor), which is a number that measures how

relevant each ad is to that particular query. The bids are then multiplied by the

quality scores and the advertisers are ranked according to this product. Search

engines use complex machine learning algorithms to select the ads. We will rep-

resent it as an exogenous random process. This results in uncertainty both about

the competing advertisers, and about quality factors. Wemodel this uncertainty

by viewing the GSP auction as a Bayesian game, and ask: what are the theoret-

ical properties of the Generalized Second Price auction taking into account the

uncertainty that the advertisers face? Surprisingly, we show that in settings with

uncertainty, the price of anarchy is still bounded by a small constant.

GSP and its sources of uncertainty. There are two main sources of uncer-

tainty: the first and main one is about the quality factors that the search engine

attributes to each advertiser and the second is about the valuations (types) of the

players. These sources are different in nature: each advertiser has knowledge

of (and can condition her behavior on) her own type, whereas quality factors

are fully exogenous and are only revealed ex post. In the rest of the section, we

discuss in detail these sources of uncertainty.

Each query is unique, in the sense that it is defined not only by the set of

keywords invoked but also the time the query was performed, the location and

history of the user, and many other factors. This context is taken into account by

an underlying ad allocation algorithm, which is controlled by the search engine.

The ad allocation algorithm not only selects which advertisers will participate in

an auction instance, but also assigns a quality factor to each advertiser. As a first

approximation we can think of the quality factor as a score that measures how
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likely that participant’s ad will be clicked for that query. These quality factors

are then used to scale the bids of the advertisers. These scaled bids are known

as effective bids, which can be viewed as bids derived from a similarly-modified

effective type. Under our assumption that quality factors measure clickability,

the effective type of an advertiser is the expected valuation of displaying the

ad (valuation of the ad times its likelihood of getting a click). The effective

bid and effective type of a player are therefore random variables, which can

be thought of as the original valuations multiplied by quality scores computed

exogenously by the search engine. Athey and Nekipelov [8] point out that the

uncertainty in quality factors produces qualitative changes in the structure of

the game. Thus, even if players converge to a stationary bidding pattern, the

resulting equilibrium cannot be described as the outcome of a full information

game.

We model the uncertainty about the effective types of advertisers as a

Bayesian, partial information game. That is, the inherent uncertainty due to

context and the ad allocation algorithm can be captured via prior distributions

over effective types, even when the true types of all potential competitors are

fully known. The appropriate equilibrium notion is then the Bayes-Nash equi-

librium with respect to these distributions. Our model allows arbitrary correla-

tions between the types and quality factors. The uncertainty of ad quality and

allocation mostly comes from the query context, and hence is best modeled by

correlated distributions of types and ad quality. Search engines use complex

machine learning algorithms to compute quality factors based on all available

information about the context, whose outcome is hard to predict for the adver-

tisers. We assume that the advertisers are aware of the distribution of quality

factors, and that the quality factors computed by the search engine correspond
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to the clickability of the ad. Our results deteriorate gracefully if the outcome of

the machine learning algorithm is not exact, but rather gives only an approxi-

mation to the clickability of an ad.

1.3.2 Social Welfare

Ourmain result is a bound on the Bayesian price of anarchy for the GSP auction.

Specifically, we show that the price of anarchy is at most 2(1 − 1
e
)−1 ≈ 3.16,

meaning that the social welfare in any Bayes-Nash equilibrium is at least 1/3.16

of the optimal social welfare. Notice that this is an unconditional bound, as

we make no assumptions on the distribution on valuation profiles and quality

factors (it can, for example, be correlated) or on the number of players or slots.

Perhaps just as important as the bound, however, is the straightforward and

robust nature of the GSP auction. In particular, our results extend to provide the

same welfare guarantees for outcomes of no-regret learning. Also, this bound

continues to hold even if players have asymmetric access to distributional in-

formation about types and quality scores, in the form of exogenously provided

signals. It also degrades gracefully in the presence of approximately rational

players or a small fraction of irrational players.

We achieve these bounds by identifying a property that encapsulates many

of the insights that drive our bounds. Roughgarden [73] identified a class of

games that he termed smooth games, defined via a similar property that is used

to bound the price of anarchy. The smoothness criterion is quite strong, and

does not apply in general to the GSPmechanism. We identify aweaker property,

semi-smoothness, that is satisfied by the GSP auction, and is strong enough to also
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imply price of anarchy bounds.

We provide improved results for the case where there is no uncertainty,

which is the traditional setting studied in [34, 75]. If valuations and quality

factors are fixed, we prove that the social welfare in any pure Nash equilibrium is

within a factor of 1
2
(
√
5 + 1) ≈ 1.618 (the golden ratio) of the optimal one and

we show a lower bound of 1.259.

1.3.3 Robustness

One feature of our results is that they hold for a variety of models regarding the

rationality and the beliefs of the players. This robustness is particularly impor-

tant in large-scale auctions conducted over the Internet, where assumptions of

full information and/or perfect rationality of the participants are unreasonably

strong.

Previously, we discussed the Bayes-Nash equilibrium as a main solution

concept to analyze auction games when we want to take into account all the

sources of uncertainty present in the environment. Now, we discuss relaxations

of this concept that allow us to model features present in real-world ad auctions

as assymmetric information, learning outcomes and approximate rationality.

1. Asymmetric information. There are different types of players in advertis-

ing markets, which may have differing levels of information about their com-

petitors. We assume all players know their own valuations correctly, but some

smaller players (such as individual advertisers) might be clueless about the

valuations of the other players and expected behavior of quality scores, while
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others (say bidding agencies or large companies with web advertising depart-

ments) may have a much better understanding of how individual rounds of the

auction will proceed. Even among this latter group, different advertisers may

have access to different information. We can model such information asym-

metries by giving each player access to an arbitrary player-specific signal that

can carry information about the effective types of the auction participants. Our

bounds on social efficiency in the Bayesian model hold in settings with such

asymmetry in information.

2. Learning players. So far we have considered equilibria of the auction game.

Instead of assuming that players who have played long enough will be in equi-

librium, one can model the entire learning process more explicitly. One natural

model is that players employ strategies that give them vanishingly small regret

over time. Roughly speaking, such a model assumes that players observe the

bidding patterns of others and modify their own bids in such a way that their

long-term performance is at least as good as a single optimal strategy chosen in

hindsight. Many simple bidding strategies yield low regret, such as Hart and

Mas-Collel’s regret matching strategy [47] or themultiplicative weight updating

strategy of [55] (see also [6]). These strategies are not necessarily in equilibrium,

but capture the intuition that players attempt to learn beneficial bidding strate-

gies over time.

The players can use these standard learning algorithms to learn how to best

bid given their valuation and signal. In other words, for each possible valua-

tion and signal, repeated auctions allow players to learn how to best bid taking

into account the varying bids of other players, and the uncertainty about qual-

ity factors, other players’ valuations, and bidding strategies. We will consider
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the quality degradation of the average social outcome when all players employ

strategies with small regret. Blum et al. [15] introduced the term Price of Total

Anarchy for this analog of the price of anarchy.

3. Approximate rationality. One of the fundamental assumptions in auction

analysis is that all players are perfectly rational utility optimizers. However,

in reality (and especially in large online settings), it is natural to assume that

some fraction of the players participating in an advertising auction might have

unsophisticated bidding strategies. In fact, some players may not even play at

equilibrium in the single-shot approximation of the GSP auction, or may only

be able to find strategies that are approximately utility-maximizing. We discuss

the robustness of our bounds to the presence of players bidding with limited

(or no) rationality. As we shall see, the GSP auction has the property that its

social welfare guarantees degrade gracefully when our assumptions about the

rationality of the players are relaxed.

1.3.4 Revenue

After establishing how far the welfare of the GSP auction is from the optimal

achievable welfare, we turn our attention to revenue. For the Bayesian setting,

we compare the revenue extracted in GSP with the revenue that is extracted by

the optimal mechanism in this setting. We consider the setting where valuations

are drawn from identical and independent distributions that satisfy the regular-

ity condition. We show that if we allow the auctioneer to include reserve prices

the GSP auction always obtains a constant fraction (1/6th) of the optimal VCG

revenue, in expectation. This means in particular, that for this setting, GSP with
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the appropriate reserve is competitive against any Bayes-Nash equilibrium of

any mechanism.

One might also wish to bound the revenue of GSP with respect to the rev-

enue of VCG without reserve prices, but we show that this is not possible: there

are cases in which the VCG revenue is unboundedly greater than the GSP rev-

enue. However, if the slot CTRs satisfy a certain well-separatedness condition

—namely, that the click-through-rates of adjacent slots differ by at least a certain

constant factor — then we prove that GSP always obtains a constant fraction of

the VCG revenue even in settings of partial information, extending a result of

Lahaie [53], who considered welfare under this assumption on the CTRs.

We consider the full information game. We prove that at any Nash equi-

librium, the revenue generated by GSP is at least half of the VCG revenue, ex-

cluding the single largest payment of a bidder. Thus, as long as the VCG revenue is

not concentrated on the payment of a single participant, the worst-case GSP rev-

enue approximates the VCG revenue to within a constant factor. This result also

holds with an arbitrary reserve price. We also provide an example illustrating

that the factor of 2 in our analysis is tight, and the revenue of GSP at equilib-

rium may be arbitrarily less than the full revenue of VCG (without excluding a

bidder).

Finally, we analyze the tradeoffs of the maximum revenue attainable by

the full information GSP mechanism under different equilibrium notions. We

demonstrate that there can exist inefficient, non-envy-free equilibria that ob-

tain greater revenue than any envy-free equilibrium. However, we prove that

if CTRs are convex, meaning that the marginal increase in CTR is monotone in

slot position, then the optimal revenue always occurs at an envy-free equilib-
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rium. This implies that when click-through rates are convex, the GSP auction

optimizes revenue at an equilibrium that simultaneously maximizes the social

welfare. The convexity assumption we introduce is quite natural and may be

of independent interest. Note that this assumption is satisfied in the case when

CTRs degrade by a constant factor from one slot to the next.

1.3.5 Related work

Here we provide a high-level review of the most important related work. We

defer an in-depth survey for the subsequent chapters. There has been consider-

able amount of work on the economic and algorithmic issues behind sponsored

search auctions – see the survey of Lahaie et al. [52] for an overview of the early

work and the survey of Maille et al. [59] for recent developments.

The two seminal papers who proposed the main model of GSP adopted in

our work are Edelman, Ostrovsky and Schwarz [34] and Varian [75]. The au-

thors notice that even though truthtelling is not a dominant strategy under GSP,

the full information game always has a Nash equilibrium that has the same al-

location and payments as the VCGmechanism – and therefore is efficient. They

focus on a subclass of Nash equilibria which is called envy-free equilibria in [34]

and symmetric equilibria in [75]. They show that such equilibria always exist and

are always efficient. In this class, an advertiser would not be better off after

switching bids with the advertiser just above her. Note that this is a stronger

requirement than Nash, as an advertiser cannot unilaterally switch to a position

with higher click-through-rate by simply increasing her bid. In [34, 35, 75], infor-

mal arguments are presented to justify the selection of envy-free equilibria, but
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no formal game-theoretical analysis is done. We believe it is an important ques-

tion to go beyond this and prove efficiency guarantees for all Nash equilibria.

Lahaie [53] also considers the problem of bounding the social welfare obtained

at equilibrium, but restricts attention to the special case that click-through-rates

decay exponentially along the slots with a factor of 1
δ
. Under this assumption,

Lahaie proves a price of anarchy of min{1
δ
, 1− 1

δ
}.

Gomes and Sweeney [42] study the GSP auction in the Bayesian setting,

where player types are drawn from independent and identical distributions

(without considering the uncertainty due to quality factors). They show that,

unlike the full information case, there may not exist symmetric or socially opti-

mal equilibria in this model, and obtain sufficient conditions on click-through-

rates that guarantee the existence of a symmetric and efficient equilibrium.

Athey and Nekipelov [8] study the effect of uncertainty of quality factors both

from a theoretical and an empirical perspective.

1.4 Designing Sponsored Search Mechanisms

In previous sections we focused on analyzing the Generalized Second Price

Auction, which is the de-facto mechanism for sponsored search. In the second

part of this thesis we take a different approach and try to design a new mech-

anism for sponsored search incorporating new features which are absent from

the standard GSP model: budgets and online supply.

Budgets refer to the fact that advertisers are financially constrained, i.e., they

have a cap on how much they can spend across all items they buy. It turns out

to be one of the most important practical features of practical advertisement
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systems. In fact, in the Google AdWords 1 interface, the first question the adver-

tisers are asked when creating a new campaign is: “what is your budget?”. This

is asked even before they select keywords or bids. In modern advertisement

systems, there is an option where the budget is the only thing chosen by the

advertiser and the bids are optimized automatically. In the face of this practical

consideration, it makes sense to study mechanisms that explicitely take budgets

into consideration.

A second feature that is absent in most traditional models of sponsored

search is the fact that the supply (pageviews) arrive in an online fashion. If bud-

get constraints are present, this becomes an issue, since the mechanism needs to

allocate them to advertisers and charge for it in real-time, without knowing of

the entire supply.

1.4.1 Budget Constraints

Satisfying budget constraints while keeping incentive compatibility and effi-

ciency is a challenging problem, and it becomes even harder in the presence of

complex combinatorial constraints over the set of feasible allocations. In the

presence of budgets, individual rationality and truthfulness cannot be satis-

fied at the same time as maximizing social welfare [31], and thus the goal of

maximizing efficiency can be achieved mainly through Pareto-optimal auctions2.

Therefore, a desirable goal under budget constraints is to design incentive-

compatible (IC) and individually-rational (IR) auctions while producing Pareto-

1http://adwords.google.com/
2An auction is Pareto-optimal if it outputs an allocation and payments such that no alterna-

tive set of allocation and payments improves the utility of at least one agent and keeps the other
agents at least as happy as before. Here, agents include bidders and the auctioneer, where the
auctioneer’s utility is its revenue.
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optimal outcomes. The first successful example of such mechanisms was devel-

oped in the seminal paper of Dobzinski, Lavi and Nisan [31], where the authors

adapt the clinching auction framework of Ausubel [9] to give a truthful mech-

anism that achieves Pareto-optimality. Their setting, however, captures only a

simple allocation constraint: there is a limited supply of k items and each player

has a value of vi for each item (and hence value of vi · t for getting t items) and

budget Bi.

As for more general allocation constraints, there have been a couple of sub-

sequent work capturing special families of allocation constraints, e.g., unit de-

mands [4], or multi-unit demands with matching constraints [38]. In this thesis

we extend those results to a large class of constraints, namely polymatroidal

constraints, which includes sponsored search as a special case. We also ask the

question of for which polyhedral environments one can design such auctions,

and also identify simple environments for which designing such auctions is not

possible.

Our results. Our results are mainly inspired by Sponsored Search Ad Auc-

tions, but extend to a large class of environmenta which can be modelled

by polymatroids. This class of environments also includes spanning tree auc-

tions, bandwidth markets and video on demand. For polymatroidal environ-

ments give an auction that achieves all the desired properties, i.e., the auction

satisfies incentive-compatible, individually-rationality, and produces Pareto-

optimal outcomes while satisfying the budget constraints. We assume that the

budgets are public, which was shown in [31] to be a necessary assumption3.

3Dobzinski et. al. [31] showed that with private budgets, truthfulness and Pareto-optimality
cannot be achieved using deterministic mechanisms - not even for multi-unit auctions.
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While following Ausubel’s framework to design this auction, we need to in-

vent the main component of the mechanism, i.e., the clinching step that copes

with the polyhedral allocation constraints. Our clinching step uses submodu-

lar minimization as a subroutine and only needs a value oracle access to the

submodular function corresponding to the polymatroid. As a result, our mech-

anism has a clean geometric description that abstracts away the combinatorial

complications of previous designs. This leaves the auctioneer free to focus on

modeling the environment, and then use our mechanism as a black-box. This

general technique not only generalizes (and simplifies) the previously known

results like multi-unit auctions with matching constraints [31, 38], but also ex-

tend clinching auctions to many other applications like the AdWords Auction

and settings like spanning tree auctions and video on demand [14]. Our main

application is in sponsored search auctions where we model the AdWords Auc-

tion with multiple keywords and multiple position slots per keyword as a poly-

matroid called the AdWords polytope (See Section 2.7.1 for details).

In order to extend this result to more general polyhedral constraints, we turn

our attention to 2-player auctions with budget constraints and prove several

structural properties of Pareto-optimal truthful auctions for polyhedral environ-

ments In particular, we present a characterization of such auctions that results

in various impossibility results and one positive result. On the positive side,

we present a truthful individually rational Pareto-optimal auction for any envi-

ronment if only one player is budget-constrained. On the other hand, if more

than one player is budget-constrained, we illustrate simple polytope constraints

for which it is impossible to achieve a truthful Pareto-optimal auction even for

two players. Moreover, as a byproduct of this characterization, we get an im-

possibility result for multi-unit auctions with decreasing marginal utilities. This
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impossibility result disproves an implied conjecture by Ausubel [9] which has

been reinforced by follow-up papers [31, 54].

1.4.2 Online Supply

The problem of selling advertisement on the web is essentially an online prob-

lem — the supply (pageviews) arrives dynamically and decisions on how to

allocate ads to pageviews and price these ads need to be taken instantaneously,

without full knowledge of the future supply. What makes these decisions com-

plex is the fact that buyers have budget constraints, which ties the allocation

and pricing decisions across different time steps. Another complicating feature

of the online advertisement markets is that buyers are strategic and can misre-

port their values to their own advantage.

These observations have sparkled a fruitful line of research in two different

directions. First is that of designing online algorithms where one assumes that

the supply arriving dynamically, but makes a simplifying assumption that buy-

ers are non-strategic. This line of research has led to novel tools and techniques

in the design of online algorithms (see for example [62, 17, 30, 3]). The second

line of research considers the design of incentive-compatible mechanisms that

assumes that buyers are strategic, but that the supply is known beforehand.

Handling budget constraints using truthful mechanisms is non-trivial since

standard VCG-like techniques fail when the player utilities are not quasi-linear.

In a seminal work, Dobzinski, Lavi and Nisan [32] showed that one can adapt

Ausubel’s clinching auction [9] to achieve Pareto-optimal outcomes for the case
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of multi-unit supply. In settings with budget constraints, the goal of maximizing

social welfare is unattainable and efficiency is achieved through Pareto-optimal

outcomes. In fact, if budgets are sufficiently large, Pareto-optimal outcomes are

exactly the ones that maximize social welfare [40].

From a practical standpoint, it is important to understand what can be done

when both the above scenarios are present at the same time. Motivated by this,

we study the following question in this paper: Can one design efficient incentive-

compatible mechanisms for the case when agents have budget constraints and the supply

arrives online?

A closely related question was studied by Babaioff, Blumrosen and Roth

[11], who asked weather it was possible to obtain efficient incentive-compatible

mechanisms with online supply, but instead of budget constraints, they con-

sidered capacity constraints, i.e., each agent wants at most k items (capacity)

rather than having at most B dollars to spend (budget). They showed that no

such mechanism can be efficient and proved lower bounds on the efficiency that

could be achieved.

Such lower bounds seem to offer a grim perspective on what can be

done with budget constraints, since typically, budget constraints are less well-

behaved than capacity constraints. On the contrary, and somewhat surprisingly,

we show that, for budget constraints, it is possible to obtain incentive compati-

ble and Pareto-optimal auctions that allocate and charge for items as they arrive,

by showing that the Adaptive Clinching Auction in [32] for multi-unit supply

can be implemented in an online manner. More formally, we show that the

clinching auction for the multi-unit supply case satisfies the following supply-

monotonicity property: Given the allocation and payments obtained by running
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the auction for initial supply s, one can obtain the allocation and payments for

any other supply s′ ≥ s by augmenting to the auction outcome for supply s. In

other words, it is possible to find an allocation for the extra s′ − s items and

extra (non-negative) payments such that when added to clinching auction out-

come for the supply s, we obtain the clinching auction outcome for supply s′.

Moreover, we show that each agent’s utility is also monotone with respect to the

supply, i.e., agents do not have incentive to leave the auction prematurely.

Our results. In the online supply setting, we study a restricted sponsored

search model where there is only a single slot per page, but this page might

receive multiple pageviews. Our main result is an online variant of the Adap-

tive Clinching Auction of [32] that allocated and charges for items as they arrive

in an incentive-compatible way, without knowing the entire supply in advance.

We do so by showing that the Adaptive Clinching Auction satisfies a supply-

monotonicity property.

From a technical perspective, proving the above result requires a deeper un-

derstanding of the structure of the clinching auction, which in general is difficult

to analyze because it is described using a differential ascending price procedure

rather than a one-shot outcome like VCG. In order to do so, we study the de-

scription of the clinching auction given by Bhattacharya, Conitzer, Munagala

and Xia [13] by means of a differential equation. At its heart, the proof of the

supply monotonicity is a coupling argument. We analyze two parallel differen-

tial procedures whose limits correspond to the outcome of the clinching auction

with the same values and budgets but different initial supplies. We prove that

either one stays ahead of the other or they meet and from this point on they

evolve identically (for carefully chosen concepts of ‘stay ahead’ and ‘meet’). We
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identify many different invariants in the differential description of the auction,

and use tools from real analysis to show that these invariants hold.

Towards better heuristics for ad-allocation. One of the main goals of this re-

search program is to provide insights for the design of better heuristics to deal

with budget-constrained agents in real ad auctions. Most heuristics in prac-

tice are based on bid-throttling or bid-lowering. Bid-throttling probabilistically

removes a player from the auction based on her spent budget (throttling). Bid-

lowering runs a standard second price auction with modified bids. While sound

from an algorithmic perspective, bid-throttling and bid-lowering are not inte-

grated with the underlying auction from the perspective of incentives. We be-

lieve clinching auctions provide better insights into designing heuristics that are

more robust to strategic behavior.

1.4.3 Related Work

Alternative Ad Auctions design. Wewould like to survey some related work

on the design of alternative AdAuction mechanisms that take into account bud-

get constraints. Feldman et al. [37] design an auction for the environment with

one keyword and multiple slots. Their model is, however, different from the

standard utilitarian utility model. Instead of being profit maximizers, the play-

ers are click maximizers, i.e., the players want to get as many clicks as possible

without exhausting their budget and without paying more per click than their

value, which is a simpler setting than ours. In order to design their auction, they

describe the structure of the set of possible randomized allocations of players to

slots. We note that the structure they identify is in fact a polymatroid and use
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this fact to apply our auction to this setting. We further extend this characteri-

zation to the setting with multiple keywords.

Also for one keyword and multiple slots, Ashlagi et al [7] design an auction

for the usual utility model but relax the truthfulness requirement and get an

auction that is Pareto-optimal for all ex-post Nash equilibria. The main weak-

ness in the setting of [7] is that the agents are allowed to be allocated only to

one slot position for all the different queries of the given keyword. However, in

reality, agents can be allocated to different slot positions for different queries of

a given keyword. In the restricted setting of [7], the Pareto-optimality require-

ment becomes easier to satisfy.

Independently of our work, Colini-Baldeschi et al [24] also study the prob-

lem of designing incentive compatible, individually rational, budget feasible

and Pareto-optimal auctions for sponsored search. The authors present two

auctions satisfying those properties: one for the case with a single keyword but

multiple slots with different click-through-rates and one for the case of multi-

ple keywords and multiple slots with homogeneous click-through-rates (i.e. all

slots are identical).

Auctions with budgets. On the generic question of designing truthful auc-

tions with budgets with the goal of achieving Pareto-optimal outcomes was by

Dobzinski, Lavi and Nisan [31], followed by Fiat et al [38], that generalized the

previous work to matching settings. Bhattacharya et al [13] show a budget-

monotonicity property for the clinching auction of [31], therefore arguing that

no player can improve his utility by under-reporting his budget. For the case

of unit-demand players, Aggrawal et al [4] design auctions for unit-demand
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players with budget constraints.

On the question of maximizing revenue, Borgs et al [16] gave a truthful auc-

tion whose revenue is asymptotically within a constant factor of the optimal

revenue. These results were improved by Abrams [1]. Subsequently, Hafalir,

Ravi and Sayedi [45] relax the truthfulness requirement, moving to ex-post Nash

equilibrium as a solution concept, and give an auction that, in equilibrium, has

good efficiency and revenue properties. More recently, Pai and Vohra [71] gave

a revenue-optimal auction for the Bayesian version of the problem. We would

like to highlight that the above work focused on the multi-unit setting only.

Our polyhedral clinching auction also generalizes the ascending auction of

Bikhchandani et al [14]. The authors consider environments where the set of

allocations is defined by a polymatroid, but don’t consider budget constraints.

On impossibility results for this setting, Fiat et al [38] gave an impossibility

result for achieving Pareto-optimality for heterogeneous goods in the budgeted

setting. It remained an open problem whether an auction was possible if goods

where identical, i.e., utilities depended only on the number items acquired and

not on which items they were. A very recent result by Lavi and May [54] shows

an impossibility result for the case where the valuation can be an arbitrary func-

tion of the number of items - i.e. players are allowed to express complementar-

ities. Since their setting is more expressive, an impossibility result is easier. Our

impossibility result for multi-unit auctions can be seen as a stronger version of

their result, since we allow players only to express valuations with diminishing

marginals. This came as a surprise to us, since it was generally believed that

such a positive result could be achieved using a variation of [31].
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Online supply. The study of auctions with online supply was initiated in

Mahdian and Saberi [58] who study multi-unit auctions with the objective of

maximizing revenue. They provide a constant competitive auction with the op-

timal offline single-price revenue. Devanur andHartline [29] study this problem

in both the Bayesian and prior-free model. In the Bayesian model, they argue

that there is no separation between the online and offline problem. This discus-

sion is then extended to the prior-free setting. The results in [29] assume that

the payments can be deferred until all supply is realized, while allocation needs

to be done online.

Our work is more closely related to the work by Babaioff, Blumrosen and

Roth [11], which study the online supply model with the goal of maximizing

social welfare. Unlike previous work, they insist (as we also do) that payments

are charged in an online manner. This is a desirable property from a practical

standpoint, since it allows players to monitor their spend in real-time. Their

results are mainly negative: they prove lower bounds on the approximability of

social welfare in setting where the supply is online. Efficiency is only recovered

when stochastic information on the supply is available.

We should also note that there is a long line of research at the intersection of

online algorithms and mechanism design, mostly dealing with agents arriving

and departing in an online manner. We refer to Parkes [72] for a survey.

1.5 Roadmap

I tried to make this thesis as self-contained as possible so that no pre-requisite

is required other then basic familiarity with calculus, probability and linear al-
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gebra. Results in game theory, combinatorics and algorithms, when needed, are

stated and explained, and either have a proof in this thesis or a reference.

Most of the background needed in Game Theory and Mechanism Design is

presented in Chapter 2, although the reader can always benefit from a broader

exposition, as the by-now-classic AGT book [69] or Hartline’s Lecture Notes on

Mechanism Design [48].

The first part of this thesis is composed of Chapter 3which covers thewelfare

in GSP auctions and Chapter 4 which covers revenue bounds. The second part

is composed of Chapter 5, which covers the design of auctions with budgets

and Chapter 6 which covers online supply.

1.6 Bibliographic Notes

EquilibriumAnalysis of GSP The resuls in this thesis appeared in the follow-

ing papers: Paes Leme and Tardos [70] (FOCS’10), Lucier and Paes Leme [57]

(EC’11), Lucier, Paes Leme and Tardos [56] (WWW’12). Some of the price of

anarchy bounds presented in this thesis were improved by Caragiannis, Kakla-

manis, Kanellopoulos and Kyropoulou in [18] and [19]. The material in the pre-

vious papers on social welfare bounds was combined (and further improved) in

[20].

Nowwe briefly describe the best bounds currently known for GSP. For social

welfare, the best known bound for the Bayes-Nash Price of Anarchy is 2.927,

for Mixed Nash Equilibria, Coarse-Correlated Equilibria, and Outcomes of No-

Regret Learning the best known bound is 2.310 and for pure Nash equilibrium
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is 1.282, nearly matching a 1.259 lower bound. We refer the reader to [20] for

the details. For revenue, the best current bounds for the revenue of GSP in

a Bayes-Nash equilibrium are 4.72 for regular distributions and 3.46 for MHR

distributions, due to Caragiannis et al [19].

Auction Design for Sponsored Search The second part of this thesis on Auc-

tion Design for Sponsored Search with budgets and online supply appeared

published in Goel, Mirrokni and Paes Leme [40] (STOC’12) and Goel, Mirrokni

and Paes Leme [41] (SODA’13).
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CHAPTER 2

TECHNICAL PRELIMINARIES

2.1 Basic Notation

Throught this thesis we will denote by R the set of real numbers, Z the set

of integers, Z+ = {z ∈ Z; z ≥ 0} the set of non-negative integers and [n] =

{1, 2, . . . , n}. Given two vectors x, y ∈ Rn we represent their dot-product as xty.

Also, given any base set Θ, we define the Θn as the set of n-dimensional

vectors over Θ. For a vector v ∈ Θn and S ⊆ [n], we denote by vS the vector

restricted to the S components. In particular we abbreviate v[n]\{i} by v−i. This

will allow us to represent the vector v as v = (vi, v−i). Whenever we refer to

(u, v−i) for some u ∈ R, we mean a vector in Θn that has u in the i-th component

and vj in any j-th component for j 6= i.

Also, given any set Ω, we represent by ∆(Ω) or simply ∆Ω the set of mea-

sures (distributions) over Ω. We sometimes abuse notation and denote by ∆Ω

the set of random variables assuming values in Ω. Which of them we mean will

be clear from the context.

Given a random variable X ∈ ∆Rn we define its expectation by E[X ] ∈ Rn.

Also, given X ∈ ∆Ω and a measurable subset S ⊂ Ω, we define P(X ∈ S)

as the probability that X ∈ S. Similarly given a measure µ over Ω we define

Ex∼µ[x] and Pµ(S) in the natural way. We drop subscripts when obvious from

the context.
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2.2 Mechanism Design Basics

We begin by reviewing the basic concepts in mechanism design. For a more

extensive treatment, we refer to Chapter 9 of [69] for a more CS-oriented text

and to classic economics references [63, 51, 39]. We restrict our presentation to

settings which will be useful in reading this thesis.

The essential goal in mechanism design is to implement a desirable outcome

in a setting where agents are strategic and will not report their private infor-

mation unless they are incentized to do so. In order to describe the problem

formally, consider a set of n agents and a set of outcomes X . The value of each

agent for each outcome x ∈ X is private information of the agent and is encap-

sulated in his type θi ∈ Θi. Now, we can represent a value of an agent i of type

θi for an outcome x as vi : Θi ×X → R.

A direct-revelation mechanism ask agents to report their types using the re-

ports, chooses an outcome and charges payments. In other words, a mechanism

is a pair of mappings x : ×iΘi → X and ϕ : ×iΘi → R
n
+. Notice that we do

not assume that agents report their true type, for this reason, we will use θi to

denote true types and θ̃i to denote reported types. Also we denote by Θ = ×iΘi

the set of type profiles.

The preferences of agents over the outcomes are expressed by means of util-

ity functions. We will consider in this thesis two types of utility functions: the

quasi-linear utility function, where:

ui(θi, θ̃) = vi(θi, x(θ̃))− ϕi(θ̃)

and the budgeted quasi-linear utility function, which is equal to the quasi-linear

if ϕi(θ̃) ≤ Bi for some publicly known value Bi and −∞ otherwise.

32



2.3 Solution Concepts

A solution concept is a model of the players rationality that is used to describe

how agents will respond to the mechanism once it is deployed. For each mech-

anism, they describe a set of reported inputs θ̃ for each true type profile θ. More

formally, a solution concept maps for each mechanism (x, ϕ) a true type profile

to a set of possible reported type profiles. More generally, it maps a type profile

to a set of distributions over type profiles. Formally, given θ ∈ Θ a solution

concept Sol associates a set Sol(θ) ⊆ ∆Θ. Now, we discuss the most common

solution concepts:

Dominant Strategies. We say that θ̃i is a dominant strategy for a player i of

type θi if:

ui(θi, (θ̃i, θ̂−i)) ≥ ui(θi, (θ̂i, θ̂−i)), ∀θ̂

This allows us to define the Dominant Strategies solution concept, which asso-

ciates each θ ∈ Θ with DomStr(θ) ⊆ Θ such that θ̃ ∈ DomStr(θ) iff for each i,

θ̃i is a dominant strategy for player i.

The dominant strategy solution concept is very powerful and it seems almost

too good to be true. In fact it rarely exists, which motivated us to look at weaker

solution concepts. On the other hand, it plays an important role in designing

games. In fact, one very popular game/mechanism design strategy is to design

a mechanism such that it has a dominant strategy for each type. We say that the

mechanism is dominant strategy truthful if θ ∈ DomStr(θ) for all θ ∈ Θ.
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Pure Nash Equilibrium. The Pure Nash Solution concept associates each θ ∈

Θ with Nash(θ) ⊆ Θ such that θ̃ ∈ Nash(θ) iff:

ui(θi, (θ̃i, θ̃−i)) ≥ ui(θi, (θ̃
′
i, θ̃−i)), ∀i, θ̃′i ∈ Θi

The concept of Pure Nash equilibrium is perhaps the most popular and nat-

ural among the solution concepts: the strategies chosen by each player are such

that there is no player that can deviate and be better-off. Although conceptually

simple, Nash equilibria do not always exist and even when they exist, they are

not always easy to find.

Mixed Nash equilibrium. The Mixed Nash Solution concept associates each

θ ∈ Θ with mNash(θ) ⊆ ∆Θ such that θ̃ ∈ mNash(θ) iff the components θ̃i are

independent random variables and :

Eθ̃ui(θi, (θ̃i, θ̃−i)) ≥ Eθ̃−i
ui(θi, (θ̃

′
i, θ̃−i)), ∀i, θ̃′i ∈ Θi

The concept of Mixed Nash equilibrium is an extension of the Pure Nash

equilibrium allowing for randomization. The celebrated Nash’s Theorem states

that for mild conditions on the strategy space (as Θi being finite for each i) a

Mixed Nash equilibrium always exists. However, there is strong evidence that

suggests that Mixed Nash Equilibria are hard to find algorithmically [26].

The solution concepts described until now are “equilibria” concepts, which

assumes that the players somehow reach a stable point in which no profitable

deviation exists. Another approach is to study the outcomes of a dynamic in

which players repeated play the game using some sort of no-regret algorithm.

This motivates the folllowing solution concept.
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Outcomes of no-regret learning. Given a true type profile θ ∈ Θ, an infinite

sequence θ̃1, θ̃2, . . . , θ̃t, . . . is said to have the no-regret learning property if there

is R(t) with limR(t)/t = 0 as t → ∞ such that for all θ̃′i :

τ
∑

t=1

ui(θi, θ̃
t) ≥

τ
∑

t=1

ui(θi, (θ̃
′
i, θ̃

t
i))− R(τ)

This means that player i doesn’t (much) regret playing his strategy rather then

choosing the best single option in hindsight θ̃′i and playing it throughout the

game.

For each τ we can associate the random variable θ̂τ that takes value θ̃t with

probability 1/τ for t = 1..τ . Now, we say that θ̃ ∈ noRegret(θ) ⊆ ∆Θ iff there

is a subsequence of θ̂τ that converges in distribution to θ̃.

The study of no-regret learning outcome motivates the following definition:

Coarse Correlated equilibrium. The Coarse Correlated Solution concept as-

sociates each θ ∈ Θwith ccNash(θ) ⊆ ∆Θ such that θ̃ ∈ ccNash(θ) iff:

Eθ̃ui(θi, (θ̃i, θ̃−i)) ≥ Eθ̃ui(θi, (θ̃
′
i, θ̃−i)), ∀i, θ̃′i ∈ Θi

This solution concept is motivated by the study of outcomes of no-regret

learning. It easily follows from the definitions that: noRegret(θ) = ccNash(θ).

Besides, Coarse Correlated equilibria can be easily found by Linear Program-

ming approximated using very straightforward algorithms as Multiplicative

Weight Updated [6] or Regret Matching [47]. The concept of Coarse Correlated

equilibrium is also a generalization of another traditional solution concept:
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Correlated Nash equilibrium. The Correlated Nash Solution concept asso-

ciates each θ ∈ Θ with cNash(θ) ⊆ ∆Θ such that θ̃ ∈ cNash(θ) iff:

Eθ̃[ui(θi, (θ̃i, θ̃−i))|θ̃i] ≥ Eθ̃[ui(θi, (θ̃
′
i, θ̃−i))|θ̃i], ∀i, θ̃′i ∈ Θi

This solution is motivated by a stronger form of regret, called swap regret. It

means that for all players i and all strategies θ̃i, player i does not regret playing i

rather then swapping it for some other θ̃′i instead. More sophisticated Learning

Dynamics converge to this type of equilibrium and, moreover, correlated Nash

equilibria can be found using Linear Programming.

It follows from the definitions that for every θ ∈ Θ:

DomStr(θ) ⊆ Nash(θ) ⊆ mNash(θ) ⊆ cNash(θ) ⊆ ccNash(θ)

so properties proved for all Coarse Correlated equilibrium naturally carry out

to all other solution concepts.

2.4 Bayesian Solution Concepts

Bayesian games or games of partial information model the scenario where

agents are uncertain about the types of other agents. Each agent i knows his

type θi but not the type θj for j 6= i. Instead, they know the distribution F−i

where θ−i is drawn from. The strategy of each player will be a mapping that

associates for each of this type θi a reported type θ̃i(θi).

Formally, a Bayesian-setting is one where the space of type profiles is

equipped with a distribution F ∈ ∆Θ. In this model it is assumed that types

of the agents are drawn by nature from the distribution F. A solution concept
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in the Bayesian setting maps a true distribution over the type space into a dis-

tribution over reported types.

Bayes Nash equilibrium. The Bayes-Nash solution concept associates each

F ∈ ∆Θ with a reported distribution F̃ ∈ ∆Θ which is described by means of a

“bidding function” θ̃i : Θi → ∆Θi such that (θ̃1(θ1), . . . , θ̃n(θn)) ∼ F̃ whenever

θ ∼ F. We say that θ̃i(·) ∈ BayesNash(F) iff:

Eθ∼F[ui(θi, θ̃(θ))|θi] ≥ Eθ∼F[ui(θi, (θ̃
′
i, θ̃−i(θ−i)))|θi], ∀i, θ̃′i ∈ Θi

Correlated Bayes Nash equilibrium. The Correlated Bayes-Nash solution

concept associates each F ∈ ∆Θ with a reported distribution F̃ ∈ ∆Θ which

is described by means of a joint “bidding function” θ̃ : Θ → ∆Θ such that

θ̃(θ) ∼ F̃whenever θ ∼ F. We say that θ̃i(·) ∈ cBayesNash(F) iff:

Eθ∼F[ui(θi, θ̃(θ))|θi, θ̃i(θi)] ≥ Eθ∼F[ui(θi, (θ̃
′
i, θ̃−i(θ−i)))|θi, θ̃i(θi)], ∀i, θ̃′i ∈ Θi

We refer to Bergemann and Morris [12] for an extensive discussion of this so-

lution concept. In speacial, for a discussion on how this solution concept is

affected by the presence of additional information signals received by the play-

ers.

Coarse Correlated Bayes Nash equilibrium. The Coarse Correlated Bayes-

Nash solution concept associates each F ∈ ∆Θ with a reported distribution

F̃ ∈ ∆Θ which is described by means of a joint “bidding function” θ̃ : Θ → ∆Θ

such that θ̃(θ) ∼ F̃ whenever θ ∼ F. We say that θ̃i(·) ∈ ccBayesNash(F) iff:

Eθ∼F[ui(θi, θ̃(θ))|θi] ≥ Eθ∼F[ui(θi, (θ̃
′
i, θ̃−i(θ−i)))|θi], ∀i, θ̃′i ∈ Θi
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2.5 Price of Anarchy and Revenue

Given a mechanism (x, ϕ) for a certain environment and a solution concept,

we measure how good this mechanism is. We do so, by defining an objective

function and measuring the outcomes of the mechanism with respect to such

objective. The most natural such objective is called Social Welfare:

SW(θ, x) =
∑

i

vi(θi, x)

one would like to compare the welfare of SW(θ, x(θ̃)) of θ̃ ∈ Sol(θ), or

Eθ̃[SW(θ, x(θ̃))] if the solution concept if randomized, with the maximum

achievable welfare maxx∗ SW(θ, x∗). The worse case of this ratio is called the

Price of Anarchy. Formally:

PoA[Sol, (x, ϕ)] = max
θ∈Θ,θ̃∈Sol(θ),x∗∈X

[

SW(θ, x∗)

SW(θ, x(θ̃))

]

If the elements of Sol(θ) are distributions in ∆Θ, say when Sol = mNash or

ccNash then, simply add expectations:

PoA[Sol, (x, p)] = max
θ∈Θ,θ̃∈Sol(θ),x∗∈X

[

SW(θ, x∗)

Eθ̃ SW(θ, x(θ̃))

]

For a Bayesian Solution concept, one does the same analysis, but taking ex-

pectations over the distributions:

PoA[Sol, (x, ϕ)] = max
F∈∆Θ,F̃∈Sol(F)

[

Eθ∼F maxx∗ SW(θ, x∗)

Eθ∼F,θ̃∼F̃ SW(θ, x(θ̃))

]

We also want to draw the attention to the reader to the fact that the payments
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ϕ do not appear explicitly in the definition of the price of anarchy. If agents have

quasi-linear utilities, the social welfare sums the utility of all the agents and the

utility of the auctioneer (which is the revenue), i.e.:

SW(θ, x) =
∑

i

ui(θi, x) +
∑

i

ϕi

and the payments cancel out. We would like to point out that even though

different payment functions do not change the social welfare, they change the

solution concept and therefore impact the equilibria being selected.

We are also interested in measuring the revenue of each mechanism, which is

simply:

Rev =
∑

i

ϕi

We would like to measure minθ̃∈Sol(θ) Rev(ϕ(θ̃)), adding expectations if the so-

lution concept so requires. Unlike social welfare, there is not a clear benchmark

against which to compare to evaluate if a mechanism is good or not. We defer

this discussion to Chapter 4.

2.6 VCG Mechanism: a generic welfare-maximizing mecha-

nism

Surprisingly, given any set of outcomes and valuations, if agents have quasi-

linear utility functions, it is possible to design a mechanism that is dominant

strategy truthful and always produces social welfare optimal outcomes. This

is the Vickrey-Clarke-Groves mechanism [77, 23, 44]. Its description is quite

simple: given reported types θ = (θ1, . . . , θn), the mechanism picks an outcome
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x∗(θ) that maximizes the reported welfare. Formally:

x∗(θ) ∈ argmaxx∈X

n
∑

i=1

vi(θi, x)

and charges the following payments:

ϕi(θ) =

[

max
x∈X

∑

j 6=i

vj(θj , x)

]

−
[

∑

j 6=i

vj(θj , x
∗(θ))

]

The VCG mechanism has two important properties: (i) individual rational-

ity, which means that each player derives non-negative utility from the mecha-

nism, i.e.:

vi(θi, x
∗(θ))− ϕi(θ) ≥ 0

(ii) dominant strategy truthful, discussed in Section 2.2, which means that re-

porting the truth maximizes the player utility. We recall that mathematically, it

means:

vi(θi, x
∗(θ))− ϕi(θ) ≥ vi(θi, x

∗(θ′i, θ−i))− ϕi(θ
′
i, θ−i)

Theorem 2.6.1 The VCG mechanism is invidually rational and dominant-strategy

truthful. Moreover, the payments are always non-negative.

Proof : Individual rationality comes easily from the definition of payments:

vi(θi, x
∗(θ))− ϕi(θ) =

[

∑

j

vj(θj , x
∗(θ))

]

−
[

max
x∈X

∑

j 6=i

vj(θj , x)

]

=

=

[

max
x∈X

∑

j 6=i

vj(θj , x)

]

−
[

max
x∈X

∑

j 6=i

vj(θj , x)

]

≥ 0

To show dominant strategy truthfulness, note that:

[vi(θi, x
∗(θ))− ϕi(θ)]− [vi(θi, x

∗(θ′i, θ−i))− ϕi(θ
′
i, θ−i)] =

[

∑

j

vj(θj, x
∗(θ))

]

−
[

∑

j

vj(θj , x
∗(θ′i, θ−i)

]

≥ 0
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by the definition of x∗
i (·). Non-negativity of the payments is obvious from the

definition.

For more details and generalizations of VCGmechanism, we refer the reader

to the survey by Nisan [69].

2.7 Sponsored Search Environment

2.7.1 Single-keyword environment

We consider an auction with n advertisers and n slots1. Each advertiser i is an

agent whose private type is a real value vi ∈ Θi = R+ representing his value per

click. The sequence v = (v1, . . . , vn) is referred to as the type profile (or valuation

profile).

An outcome is an assignment of advertisers to slots. An outcome can be

viewed as a permutation π with π(j) being the advertiser assigned to slot j.

We define for notational convenience σ = π−1 and use σ(i) to denote the slot

where player i is allocated. The probability of a click depends on the slot as well

as the advertiser shown in the slot. We use the model of separable click proba-

bilities. We assume slots have associated click-through-rates α1 ≥ α2 ≥ . . . ≥ αn,

and each advertiser i has a quality factor γi that reflects the clickability of the ad.

When advertiser i is assigned to the k-th slot, she gets αkγi clicks.

If advertiser i is assigned to slot j at a price of pi per click (i.e. ϕi = αjγipi),

1We note that we can handle unequal numbers of slots and advertisers by adding virtual
slots with click-through-rate zero or virtual advertisers with zero valuation per click.
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then her utility is αjγi(vi − pi), which is the number of clicks received times

profit per click. Therefore the social welfare of an outcome π is SW(π, v, γ) =
∑

j αjγπ(j)vπ(j), the total value of the solution for the participants. The social

welfare also depends on the click-through-rates αj , but throughout this the-

sis we will assume they are fixed and common knowledge, and as a result

we suppress them in the notation. The optimal social welfare is Opt(v, γ) =

maxπ SW (π, v, γ), the welfare generated by the socially efficient outcome. Note

that the efficient outcome sorts advertisers by their effective values γivi, and as-

signs them to slots in this order. The effective value can be thought of as the

expected value of showing the ad in a slot with click-through-rate equal to 1.

2.7.2 Geometric Representation

We can represent an outcome π by a vector x ∈ Rn
+ where xi is the number of

clicks that player i gets, in other words, x is such that: xπ(j) = αjγπ(j). Therefore,

we can represent the set of possible outcomes by the setX ⊆ Rn
+ defined above.

This notation allows us, for example, to write the Social Welfare as a dot-

product: SW(v, x) = vtx. In the case where γi = 1 for all i, then X is the set of

all the permutations of the coordinates of the vector (α1, . . . , αn).

Notice thatX is a finite set of n-dimensional vectors. It is easy to see that the

set of vectors of expected number of clicks that are feasible from a randomized

allocation, i.e. a distribution over assignments from players to slots, can be

represented as the convex-hull of X . In the next section, we show that this

convex-hull has a nice and useful description.
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2.7.3 Multi-keyword environment

Consider now n advertisers andm keywords. Each advertiser i is interested in a

subset of the keywords Γ(i) ⊆ [m]. We assume this is public information. For a

keyword k, we denote by Γ(k), the set of advertisers interested in this keyword.

With each keyword k, we associate |Γ(k)| positions. Position j for keyword k

has click-through-rate αk
j (possibly zero) such that αk

1 ≥ αk
2 ≥ . . . ≥ αk

|Γ(k)| for

each k.

Assuming that each keyword gets a large amount of queries, we see αk
j as

the sum of number of clicks that the j-th position of keyword k gets across all

queries that it matches. We assume that the number of clicks a player gets in

slot j of keyword k is a product γk
i · αk

j .

LetAk = {σk : Γ(k) →֒ [|Γ(k)|]} be the set of all allocations (one-to-one maps)

from players to slots for keyword k. A deterministic outcome, is a set of alloca-

tions σk ∈ Ak for each keyword k. Again, we can represent this geometrically:

given {σk}k, consider x such that:

xi =
∑

k∈Γ(i)
γk
i · αk

σk(i)

For a randomized allocation, let ∆(Ak) be the distributions of such alloca-

tions. Given that, we can define the AdWords polytope in the following way:

an allocation of clicks x is feasible if there is a distribution over allocations of

players to slots for each keyword such that player i gets xi clicks in expectation.

More formally:

Definition 2.7.1 The AdWords polytope is the set of feasible allocations 2 of clicks

2Since the number of clicks is typically very large we treat them as divisible goods and con-
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x = (x1, . . . , xn) such that there are distributions Dk ∈ ∆(Ak) for each keyword, and

xi ≤
∑

k∈Γ(i)
Eσk∼Dk

[γk
i · αk

πk(i)
]

2.8 Polyhedral and Polymatroidal Environments

We call polyhedral environments, settings where the set of possible outcomes can

be represented by a packing polytope P = {x ∈ Rn
+;Ax ≤ b} for some m × n

matrix with Aij ≥ 0 and b ∈ Rm
+ . Examples of polyhedral environments are

ubiquitous in game theory (see [67, 68] for many examples).

A rich subclass of packing polytopes is the class of polymatroids, which are

polytopes that can be written as P = {x ∈ R
n
+;
∑

i∈S xi ≤ f(S)} where f : 2[n] →

R+ is a monotone submodular function, i.e., a function such that:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), ∀S, T ⊆ [n]

and

f(S) ≤ f(T ), ∀S ⊆ T ⊆ [n]

Such polymatroidal environments generalize many previously studied en-

vironments: the multi-unit auctions environment of Dobzinski et al [31] corre-

sponds to the uniform matroid and the matching markets studied in Fiat et al

[38] correspond to the transversal matroid. Bikhchandani et al [14] give many ex-

amples of polymatroid environments including scheduling with due dates, net-

work planning, pairwise kidney exchange, spatial markets, bandwidth markets

andmulti-class queueing systems [14]. We exemplify some of those applications

below:

sider also fractional allocations.
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• Multi-unit auctions: P = {x;∑i xi ≤ Q} where Q is the total supply.

• Combinatorial auctions with matching constraints: The auction consid-

ered in [38], there is a bipartite graph ([m], [n], E) between items [m] and

bidders [n] and each buyer i has additive value 1 for each item j such that

(i, j) ∈ E and value 0 for each item not connected to him. We can represent

this setting by a polymatroid where f(S) is the number of items connected

to some player in S. This is called the transversal matroid.

• Video on demand [14]: Consider company that provides video on de-

mand that is located on a node s of a direct network with capacities on the

edges G = (V,E, c). Each buyer corresponds to a node in the network. An

allocation x is feasible if it is possible to transmit at rate xi for each player

i simultaneously. This is possible if for each subset S ⊆ [n] of players,
∑

i∈S xi is smaller then the min-cut from s to S. Using the submodularity

of the cut-function, it is easy to see that the environment is a polymatroid.

• Spanning tree auctions: Consider the abstract settingwhere the agents are

edges of a graph G and the auctioneer is allowed to allocate goods to a set

only if it has no cycles. This corresponds to the graphical matroid of graph

G. A more practical setting is when a telecommunication company owns a

network that contains cycles and decides to auction their redundant edges.

This setting corresponds to the dual-graphical matroid of G.

2.8.1 Sponsored Search as a Polymatroidal Environment

In this section we will show that the AdWords Polytope, for the case where

γk
i = 1 for all i, k, is a polymatroidal environment. This will enable us to explore
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the combinatorial properties of polymatroids once designing mechanisms for

this setting.

First we start by recalling the definition of the AdWords polytope for a single

keyword: an allocation σ maps each player i to a position σ(i). Therefore, an al-

location vector x is feasible iff there is a probability distribution over allocations

such that:

0 ≤ xi ≤ Eσ[ασ(i)]

Feldman et al [37] relate the problem of deciding if a vector x is feasible to a

classical problem in scheduling theory - scheduling in related machines with

preemptions (Q|pmtn|Cmax [43]). What follows a re-statement of their character-

ization in a format that makes it clear it is a polymatroidal environment.

Lemma 2.8.1 (Feldman et al [37]) An allocation vector x is feasible iff for each S,

x(S) ≤∑|S|
j=1 αj , where x(S) =

∑

i∈S xi for each set S ⊆ [n].

Notice that fk(S) =
∑|S|

j=1 α
k
j is a submodular function, so the set of feasible

allocations for the single-keyword setting is a polymatroid.

For the multiple-keyword setting, we say that an allocation vector x is fea-

sible if we can write xi =
∑

k∈Γ(i) x
k
i in such a way that the vector (xk

i )i∈Γ(k) is

feasible for keyword k, i.e., xk(S) ≤ fk(S) for every S ⊆ Γ(k).

For the multiple-keyword setting, we say that an allocation vector x is fea-

sible if we can write xi =
∑

k∈Γ(i) x
k
i in such a way that the vector (xk

i )i∈Γ(k) is

feasible for keyword k, i.e., xk(S) ≤ fk(S) for every S ⊆ Γ(k).

The fact that this allocation set is a polymatroid is a direct consequence of the

following theorem, which is a polymatroidal version of Rado’s Theorem due to
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McDiarmid [61].

Theorem 2.8.2 (McDiarmid [61]) Given a bipartite graph ([n] ∪ [m], E), its neigh-

borhood map Γ(·), m submodular functions f1, . . . , fm and their respective polyma-

troids P1, . . . , Pm, then the set:

P ∗ = {x ∈ R
n
+; xi =

∑

k∈Γ(i)
xk
i and xk ∈ Pk}

is a polymatroid defined by the function

f ∗(S) =
∑

k

fk(S ∩ Γ(k))

.

2.8.2 Quality factors

So far, we assumed that the click-through-rate of player i allocated to slot j of

keyword k depends solely on k and j. More generally, wewould like to consider

the click-through-rate of a slot depending also on the player allocated in that

slot. Let αk
j,i be the click-through-rate of position j of keyword j when player i

is placed there. Traditionally, we consider the click-through-rates in a product

form, i.e., αk
j,i = αk

j ·γk
i where γk

i is called quality factor. Assuming quality factors

are public information, one can, in a similar way, define a polytope of feasible

allocations. In general it will not be a polymatroid.

If the quality factors are uniform among all queries, i.e., γk
i = γi, the the set

of feasible allocations is given by P ∗
γ = {x; (xi

γi
)i ∈ P ∗}where P ∗ is the AdWords

polytope defined as a function of αk
j . We call such polytopes scaled polymatroids.
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2.9 Generalized Second Price Auction

For the first part of this thesis, we focus on a particular mechanism, the Gener-

alized Second Price auction, which works as follows: the mechanism begins by

eliciting players types. They are asked to submit a bid, which is his reported val-

uation. Given a bid profile b, we define the effective bid of advertiser i to be γibi,

which is her bid modified by her quality factor, analogous to the effective value

defined above. The auction sets π(k) to be the advertiser with the kth highest

effective bid (breaking ties arbitrarily). That is, the GSPmechanism assigns slots

with higher click-through-rate to advertisers with higher effective bids. Prices

per click are then set according to critical value: the smallest bid that guaran-

tees the advertiser the same slot. When advertiser i is assigned to slot k (that is,

when π(k) = i), this critical value is defined as

pi =
γπ(k+1)

γi
bπ(k+1)

where we take bn+1 = 0. We will write ui(b, γ) for the utility derived by adver-

tiser i from the GSP mechanism when advertisers bid according to b:

ui(b, γ) = απ−1(i)γi(vi − pi) = απ−1(i)[γivi − γπ(π−1(i)+1)bπ(π−1(i)+1)].

Notice that π is a function of b, γ as well. In places where we need to be more

explicit, we will write π(b, γ, j) to be the advertiser assigned to slot j by GSP

when quality factors are γ and the advertisers bid according to b. We will also

write σ(b, γ, i) for the slot assigned to advertiser i, again when advertisers bid

according to b and quality factors are γ. In other words, σ(b, γ, ·) = π−1(b, γ, ·).

We write πi(b−i, γ, j) to be the advertiser that would be assigned to slot j if ad-

vertiser i did not participate in the auction. When b and γ are clear from the

context, we write π(i) and σ(i) instead of π(b, γ, i) and σ(b, γ, i). We will also

48



write ν(v, γ) for the optimal assignment of slots to advertisers for valuation pro-

file v, so that ν(v, γ, i) is the slot that would be allocated to advertiser i in the

optimal assignment3.

2.9.1 No overbidding

It is important to note that, in both the full information and Bayesian settings,

any bid bi > vi is dominated by the bid bi = vi in the GSP auction. If by bidding

bi > vi, the next highest effective bid is greater than γivi, then the player gets

negative utility. If on the other hand, the next highest effective bid is smaller

or equal than γivi, then bidding bi = vi would get the same slot and payment.

Based on this, we make the following assumption for the rest of the paper:

Assumption: Players are conservative and do not employ dominated strategies in

GSP auctions. This means that for pure strategies bi ≤ vi, for mixed strategies

P(bi > vi) = 0, and for Bayesian strategies P(bi(vi) > vi) = 0 for all vi.

We use this assumption to rule out unnatural equilibria in which advertisers

apply dominated strategies such as bidding bi > vi. We remark that, in these

equilibria, the social welfare may be arbitrarily worse than the optimal. It is

therefore necessary to exclude dominated strategies in order to obtain mean-

ingful bounds on the price of anarchy. We note, however, that this phenomenon

is not specific to the GSP auction: such degenerate equilibria exist even in the

3We note that, since GSP makes the optimal assignment for a given bid declaration, we ac-
tually have that ν(v, γ, i) and σ(v, γ, i) are identically equal. We define ν mainly for use when
emphasizing the distinction between an efficient assignment for a valuation profile and the as-
signment that results from a given bid profile.
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Vickrey auction for a single good, where truthful bidding is a weakly dominant

strategy. Since the Vickrey auction is a special case of GSP auctions (where one

slot has α1 = 1, all other slots have αi = 0 and all quality factors have γi = 1),

this issue carries over to our setting. Consider the example of a single-item Vick-

rey auction, where truthful bidding of bi = vi is a weakly dominant strategy. Yet

with overbidding, there are equilibria where an arbitrary player with low valu-

ation bids excessively high (and hence wins), while everyone else bids 0. Note,

however, that this Nash equilibrium seems very artificial as it depends crucially

on the low valuation player using the dominated strategy of overbidding. In-

deed, such an advertiser is exposed to the risk of negative utility (if some other

advertiser submits a new bid between her valuation and bid) without any ben-

efit. We therefore take the position that advertisers will avoid such dominated

strategies when participating in the GSP auction.
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CHAPTER 3

EFFICIENCY OF EQUILIBRIA IN GSP

3.1 Price of Stability

Before we start discussing the main results in this thesis we begin by reviewing

what is known from the structure of Nash and Bayes-Nash equilibria of the GSP

auction. The results discussed in this section are due to Edelman, Ostrovsky and

Schwarz [34], Varian [75] and Gomes and Sweeney [42].

A classical result in [34, 75] establishes the existence of an efficient Nash

equilirium for GSP. More specifically, they define a concept called envy-free equi-

libria in [34] and symmetric equilibria in [75], which is a subset of the set of pure

Nash equilibria. They both prove that this class is non-empty and that every

equilibrium in this class maximizes social welfare.

Definition 3.1.1 Given a full information GSP game with n players defined by click-

through-rates α1 ≥ . . . ≥ αn, quality scores γ1, . . . , γn and valuations v1, . . . , vn, we

say that a set of bids b1, . . . , bn is an envy-free equilibrium iff for any pair j, k of play-

ers, player j wouldn’t prefer player k’s allocation and payments rather then his own.

Mathematically:

αj · (γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αk · (γπ(j)vπ(j) − γπ(k+1)bπ(k+1))

where π(j) is the players witht the j-th highest effective bid (i.e. highest γibi value) and

bπ(n+1) = 0.

It is simple to see that every envy-free equilibrium is a Nash equilibrium. In

fact, a set of bids b1, . . . , bn is a Nash equilibrium by the definition iff:
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αj · (γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αk · (γπ(j)vπ(j) − γπ(k)bπ(k)), ∀k < j

αj · (γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αk · (γπ(j)vπ(j) − γπ(k+1)bπ(k+1)), ∀k ≥ j

since a player can easily decrease his bid and acquire a lower slot paying the

price the player that is occupying that slot is paying, but in order to acquire a

higher slot it needs to pay not the price the player occupying that slot is paying,

but the price the player occupying that slot is bidding.

Notice that for k ≥ j the inequalities describing Nash equilibria and envy-

free equilibrium are the same, however, for k < j, the inequalities describing

envy-free equilibrium are stricter, since γπ(k+1)bπ(k+1) ≤ γπ(k)bπ(k).

Lemma 3.1.2 ([34, 75]) Every envy-free equlibrium is efficient.

Proof : Let π′ : [n] → [n] be any allocation. We will show that the welfare under

π is at least as large as the welfare under π′, i.e.:

∑

j

αjγπ(j)vπ(j) ≥
∑

j

αjγπ′(j)vπ′(j)

Let σ(j) = π−1(j) and σ′(j) = (π′)i−1(j). We can re-write the envy-free inequal-

ity in terms of σ by taking j = σ(i):

ασ(i) · (γivi − γπ(σ(i)+1)bπ(σ(i)+1)) ≥ αk · (γivi − γπ(k+1)bπ(k+1))

Now, consider the case where k = σ′(i):

ασ(i) · (γivi − γπ(σ(i)+1)bπ(σ(i)+1)) ≥ ασ′(i) · (γivi − γπ(σ′(i)+1)bπ(σ′(i)+1))

Summing the expression above for i ∈ [n] gets us:

∑

i

ασ(i)·γivi−
∑

i

ασ′(i)·γivi ≥
∑

i

ασ(i)γπ(σ(i)+1)bπ(σ(i)+1)−
∑

i

ασ′(i)γπ(σ′(i)+1)bπ(σ′(i)+1) = 0
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which can be re-written as:

∑

j

αj · γπ(j)vπ(j) ≥
∑

j

αj · γπ′(j)vπ′(j)

A less direct but perhaps more insightful proof is that the concept of envy-

free equilibrium provides the dual variables for the natural LP that solves the

following optimization problem: maxπ
∑

j αjγπ(j)vπ(j). Consider the following

primal-dual pair of linear programs:

max
∑

ij αjγivixij

∑

i xij ≤ 1, ∀j (ϕj)

∑

j xij ≤ 1, ∀i (ui)

xij ≥ 0, ∀i, j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

min
∑

i ui +
∑

j ϕj

ui + ϕj ≥ αjγivi, ∀i, j (xij)

ui ≥ 0, ∀i

ϕj ≥ 0, ∀j

Notice that the envy-free equilibrium condition provides the dual variables

that certify the optimality of the solution xij = 1when π(j) = i and 0 otherwise.

Taking:

uπ(j) = αj · (γπ(j)vπ(j) − γπ(j+1)vπ(j+1)) and ϕk = αkγπ(k+1)vπ(k+1)

we have that the dual equations correspond exactly to the envy-freeness condi-

tions.

In light of the previous observation it is rather unsurprising that the set of

envy-free equilibria is non-empty. Next we prove this fact in a more direct way

and we present the connection established in [34] between the envy-free equi-

libria of GSP and the outcome of the VCG mechanism.
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Lemma 3.1.3 The set of envy-free equilibria of GSP is non-empty.

Proof : We can sort the agents such that γ1v1 ≥ . . . ≥ γnvn. Consider the

following set of bids: b1 = v1 and for i 6= 1we have:

bi =
1

αi−1γi

[

n
∑

j=i

(αj−1 − αj)γjvj

]

It is straightforwards to check that b1 ≥ b2 ≥ . . . ≥ bn and that the envy-free

conditions hold.

Indeed, if one wants to inspect the total payment of player i in this mecha-

nism (assuming γ1v1 ≥ . . . ≥ γnvn), one will notice that:

ϕi =

n
∑

j=i+1

(αj−1 − αj) · γjvj

which corresponds to the externality that player i imposes on the other players,

in other words, that is the gain in welfare for all the other players except i that

would be incurred in case i decided not to participate in the mechanism. This

shows that this equilibrium of the GSP mechanism exactly mimics the outcome

of the VCGmechanism discussed in Section 2.6, in the sense that it produces the

same allocation and payments.

A consequence of the previous lemmas is:

Theorem 3.1.4 The (pure) Price of Stability of the GSP mechanism is 1, i.e., there is

always a fully efficient pure Nash equilibrium.

However, it is not true that all equilibria of the GSP mechanism are fully

efficient. Consider for example one instance with 2 players and 2 slots such
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that: α1 = 1, α2 =
1
2
, v1 = 1, v2 =

1
2
and γ1 = γ2 = 1. In this case, the bids b1 = 0,

b2 = 1
2
constitute a pure Nash equilibrium and its efficiency is 1 · 1

2
+ 1

2
· 1 = 1

while the optimal has efficiency 1 · 1 + 1
2
· 1
2
= 5

4
. In section 3.3.2 we discuss this

example in more detail.

Price of Stability with Uncertainty In the Bayesian setting, where there is un-

certainty about the valuations of the players, Gomes and Sweeney [42] show

that GSP might fail to have an efficient Bayes-Nash equilibrium. In what fol-

lows we reproduce the argument in [42]:

Lemma 3.1.5 ([42]) Consider a Bayesian GSP instance with 3 iid players with vi ∼

Uniform[0, 1] and quality factors γ1 = γ2 = γ3 = 1. Also, let the click-through-rates be

(1, α, 0). For sufficiently high-values of α there is no efficient Bayes-Nash equilbrium,

in other words, for any equilibrium:

E[1 · vπ(1) + α · vπ(2)] < E[1 · v(1) + α · v(2)]

where v(1) and v(2) indicate the maximum and second maximum values in v1, v2, v3

respectively.

The proof above is based on the revenue equivalence principle [64]. Such

result has appearedmany times in the literature with increasingly general forms

- we refer to Milgrom [63] or Hartline [48] for an extensive discussion. Here we

prove a version of it tailored to the proof of Lemma 3.1.5.

Lemma 3.1.6 (Revenue Equivalence) Given n apriori-identical agents, i.e, γ1 =

. . . = γn and vi are drawn iid from the same distribution F. Let b(v) be a symmetric

equilibrium of GSP and a monotone increasing bidding function. Also, letE[ϕGSP
i (v)] be
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the expected payment of player i if his value is v and his bid is b(v), with the expectation

conditioned on the values of all the other agents drawn from F. Also, let E[ϕVCG
i (v)] be

his expected payment when his value is v on the VCG mechanism (and he bids v since

the mechanism is truthful). Then:

E[ϕGSP
i (v)] = E[ϕVCG

i (v)]

Proof : Let E[xGSP
i (v)] and E[xVCG

i (v)] be the expected number of clicks player i

gets on the GSP and VCG mechanism respectively. In GSP by bidding b(v) and

in the VCG by bidding v. Notice that for any valuation vector (v1, . . . , vn), the

allocations from players to slots is the same, therefore: E[xGSP
i (v)] = E[xVCG

i (v)].

Notice that since b(v) is an equilibrium, a player with value v doesn’t want

to bid as a player with value u, which means that:

v · E[xGSP
i (v)]− E[ϕGSP

i (v)] ≥ v · E[xGSP
i (u)]− E[ϕGSP

i (u)]

Making u = v+ ǫ, re-arranging terms, dividing by ǫ and taking ǫ to zero, we get:

v · ∂vE[xGSP
i (v)]− ∂vE[ϕ

GSP
i (v)] ≤ 0. Taking u = v− ǫ and doing the same, we get:

v · ∂vE[xGSP
i (v)]− ∂vE[ϕ

GSP
i (v)] ≥ 0. Therefore:

v · ∂vE[xGSP
i (v)]− ∂vE[ϕ

GSP
i (v)] = 0

therefore:

E[ϕGSP
i (v)] =

∫ v

0

u · ∂vE[xGSP
i (u)]du =

∫ v

0

u · ∂vE[xVCG
i (u)]du = E[ϕVCG

i (v)]

Proof of Lemma 3.1.5 : If there is an efficient equilibrium, then it corresponds to

a symmetric monotone bidding function b(v), since if the bidding function is not

56



symmetric or if it is not monotone, then with some probability the players will

produce innefficient outcomes. Now, let’s calculate the format of the symmetric

function. In order to do that, we use the revenue equivalence theorem. First, we

calculate the payment of a player with value v in VCG.

E[ϕVCG
i (v)] = 2(1− v)

∫ v

0

αxdx+ 2

∫ v

0

∫ x

0

(1− α)x+ αydydx

where the first term corresponds to the event that among the other players one

of them has a value above v (which happens with probability 1 − v) and other

has value below v (hence the integral from 0 to v). In this case player i pays

the value of the player below him. We multiply by 2 to take into account that

their roles might be reversed. Now, in the second case, we consider the case

where both players have value below v. In this case player i pays (1− α) times

the highest value and α times the second. We again multiply by 2 to take into

account that the roles might be reversed. Solving the integral, we get:

E[ϕVCG
i (v)] = αv2 +

2

3
(1− 2α)v3

Now, we get the revenue in GSP by:

E[ϕGSP
i (v)] = 2(1− v)

∫ v

0

αb(x)dx+ 2

∫ v

0

∫ x

0

b(x)dydx =

= 2(1− v)

∫ v

0

αb(x)dx+ 2

∫ v

0

xb(x)dx

Now, we use the revenue equivalence theorem to say that E[ϕGSP
i (v)] =

E[ϕVCG
i (v)]. By derivating what we get from this expression, we obtain:

2

[

−α

∫ v

0

b(x)dx + α(1− v)b(v) + vb(v)

]

= 2αv + 2(1− 2α)v2

∫ v

0

b(x)dx = b(v) · (1− v +
v

α
)− v − 1

α
· (1− 2α)v2
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Figure 3.1: Solution b(v) = B′(v) of the ODE for various values of α

Defining B(v) =
∫ v

0
b(x)dx, we get a standard first-order ODE:

B′(v) · (1− v +
v

α
)− B(v)− v − 1

α
· (1− 2α)v2 = 0 s.t. B(0) = 0

This ODE is in the form f ′(x)+p(x) ·f(x)+q(x) = 0 for known p, q functions,

so it can be solved by the integrating factor method. Solving it this way and

then taking b(v) = B′(v) and plotting for various values of α, we get the result

in Figure 3.1.

For high values of α, the unique b(v) that is a solution to the integral equation

above is not monotone. Hence, there is no symmetric equilibrium Bayes-Nash

equilibrium. Since an efficient equilibrium must be symmetric, there is no effi-

cient Bayes-Nash equilibrium.
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3.2 Price of Anarchy with Uncertainty

Our main result is a bound on the price of anarchy for the Generalized Second

Price auction with uncertainty. Recall that our model captures two types of un-

certainty: uncertainty for player types and uncertainty about quality factors.

Further, our result holds even in the presence of information asymmetry in the

form of personalized signals available to the players. For simplicity of presen-

tation, we focus on the setting where there are no signals and player valuations

and quality factors are drawn from a known joint distribution (F,G).

Theorem 3.2.1 The price of anarchy of the Generalized Second Price auction with un-

certainty is at most 3.164. That is, for any fixed click-through-rates α1, . . . , αn, any

joint distribution (F,G) over valuation profiles and quality factors, and any Bayes-

Nash equilibrium b,

Ev,γ,b[SW (π(b, γ), v, γ)] ≥ 1

3.164
Ev,γ [OPT (v, γ)].

Our proof is based on an extension of a proof technique introduced by

Roughgarden [73], which he calls smoothness. We begin by reviewing this no-

tion briefly in the context of a general game. Let t = (t1, . . . , tn) denote the

(fixed) player types in a game, and h = (h1, . . . , hn) a pure strategy profile for

the players, and let Ui(t, h) denote the utility of player iwith player types t, and

strategy profile s. Let sw(t, h) denote the social welfare generated by strategy

profile s, and sw∗(t) the maximum possible social welfare. Roughgarden de-

fines (λ, µ)-smooth games as games where for all pairs of pure strategy profiles

h, h′, and any (fixed) vector of types t, we have

∑

i

Ui(t, h
′
i, h−i) ≥ λ · sw(t, h′)− µ · sw(t, h).
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Roughly speaking, smoothness captures the property that if strategy profile h′

results in a significantly larger social welfare than another strategy profile h,

then a large part of this gap in welfare is captured by the marginal increases

in the utility of each individual player when unilaterally switching her strategy

from hi to h′
i.

The GSP game is not strictly speaking smooth according to the original defi-

nition of smoothness in [73] but, as we show below, it is smooth according to the

relaxed definition in Nadav and Roughgarden [66]. Here, we define a related

property called semi-smoothness which is weaker then the original definition of

smoothness in [73] but stronger then the definition in [66]. It has the advan-

tage over the previous definitions that it implies Price of Anarchy bounds for

Bayesian games with correlated types. The semi-smoothness property goes as

follows: there is a particular (possibly randomized) strategy profile h′ for which

a smoothness-like inequality holds for any other pure strategy profile h. In other

words, we prove the existence of a single bidding profile h′ (depending on the

types) that can be used by players unilaterally to improve the efficiency of GSP

whenever its allocation is highly inefficient.

Definition 3.2.2 (Semi-Smooth Games) We say that a game is (λ, µ)-semi-

smooth if for each player i there exists some (possibly randomized) strategy h′
i(·) (de-

pending only on the type of the player) such that,

∑

i

Eh′

i(ti)
[Ui(t, h

′
i(ti), h−i)] ≥ λ · sw∗(t)− µ · sw(t, h),

for every pure strategy profile h and every (fixed) type vector t. The expectation is taken

over the random bits of h′
i(ti).
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Analogous to Roughgarden’s [73] proof, semi-smoothness also immediately

implies a bound on the price of anarchy with uncertainty.

Lemma 3.2.3 If a game is (λ, µ)-semi-smooth and its social welfare is at least the sum

of the players’ utilities, then the price of anarchy with uncertainty (and information

asymmetries) is at most (µ+ 1)/λ.

Proof : Consider a game in the Bayesian setting where player types are drawn

from a joint probability distribution and let h be a Bayes-Nash equilibrium

for this game. By the definition of the Bayes-Nash equilibrium, we have that

Et−i,h[Ui(t, h)|ti] ≥ Et−i,h[Ui(t, h
′
i(ti), h−i)|ti] for every value the random variable

h′
i(ti) may take. Hence, Et−i,h[Ui(t, h)|ti] ≥ Et−i,hEh′

i(ti)
[Ui(t, h

′
i(ti), h−i)|ti]. Now

taking expectation over ti, we get Et,h[Ui(t, h)] ≥ Et,hEh′

i(ti)
[Ui(t, h

′
i(ti), h−i)]. By

summing over all players, and using the fact that the social welfare is at least

the sum of the players’ utilities, as well as the semi-smoothness property, we

have

Et,h[sw(t, h)] ≥ Et,h[
∑

i

Ui(t, h)]

≥ Et,h[
∑

i

Eh′

i(ti)
[Ui(t, h

′
i(ti), h−i)]]

≥ Et,h[λ · sw∗(t)− µ · sw(t, h)]

= λEt[sw
∗(t)]− µEt,h[sw(t, h)].

Note that the third inequality follows by applying the semi-smoothness prop-

erty for every fixed type vector and every pure strategy profile that are simul-

taneous outcomes of the random vectors t and h. The last inequality implies

Et[sw
∗(t)] ≤ µ+1

λ
Et,h[sw(t, h)], as claimed.
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We remark that the proof holds without significant changes if we add infor-

mation asymmetries in the game, i.e., if we assume that each player gets signals

that reveal her type and refine her knowledge on the probability distributions

of the types of the other players. All we need to change in this case is to replace

the expectations over types with expectations over signals.

Notice that the usefulness of Lemma 3.2.3 lies in the fact that it can provide

bounds on the efficiency loss for Bayesian games (and, as we will see in further

sections, under evenmore general equilibrium concepts) by examining substan-

tially more restricted settings. In the context of GSP auction games, it allows us

to focus on identifying a (possibly randomized) deviating bid strategy for each

player (i.e., a bid b′i for each player i) so that the semi-smoothness inequality

holds for every fixed valuation vector v and pure bidding profile b. By Lemma

3.2.3, this then immediately implies a bound on the price of anarchy of GSP

auction games with uncertainty and information asymmetries.

We note that, technically speaking, the GSP auction does not immediately fit

into the framework of semi-smoothness: advertiser payoffs depend on random

quality factors which may be correlated with the type profile. However, this

notational technicality is easily addressed by expressing advertiser utilities in

expectation over quality scores. That is, expressing utilities in the GSP auction

in the notation of general games, we have Ui(v, b) = Eγ [ui(b, γ)|v]. Since quality

factors affect the social welfare as well, we have sw∗(v) = Eγ [OPT (v, γ)|v] and

sw(v, b) = Eγ [SW (π(b, γ), v, γ)|v].

We are ready to prove that GSP auction games are semi-smooth.

Lemma 3.2.4 The GSP auction game is (1− 1
e
, 1)-semi-smooth.
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Proof : We begin by rewriting the definition of semi-smoothness in the notation

of GSP auctions. The GSP auction game is (1− 1
e
, 1)-semi-smooth if and only if,

for each valuation profile v, there exists a bid profile b′ (with b′i depending only

on the valuation of player i) such that, for every bid profile b,

∑

i

Eγ[ui(b
′
i, b−i, γ)|v] ≥

(

1− 1

e

)

Eγ[OPT (v, γ)|v]− Eγ[SW (π(b, γ), v, γ)|v].

(3.1)

We will actually establish the stronger inequality that, for all γ,

∑

i

ui(b
′
i, b−i, γ) ≥

(

1− 1

e

)

OPT (v, γ)− SW (π(b, γ), v, γ). (3.2)

The desired inequality (3.1) will then follow by taking (3.2) in expectation over

the choice of γ (whose distribution may depend on the valuation profile v).

Before establishing inequality (3.2), we will prove the slightly weaker state-

ment that the GSP auction game is (1/2, 1)-semi-smooth (which implies a bound

of 4 on the price of anarchy with uncertainty). Choose a vector v of fixed valua-

tions, a pure bidding profile b, and quality factors γ. Consider a (deterministic)

deviating bid b′i = vi/2 for each player i. We distinguish between two cases (re-

calling that ν(i) is the slot assigned to player i in the efficient allocation given v

and γ):

• If by bidding b′i player i gets slot ν(i) or better, then ui(b
′
i, b−i, γ) ≥

αν(i)γivi/2, as the payment pi cannot exceed her effective bid.

• If by bidding b′i player i gets a slot lower than ν(i), then the effective value

of the player π(ν(i)) in slot ν(i) is at least γivi/2, as we assume no overbid-

ding.

We conclude that, in either case,

ui(b
′
i, b−i, γ) ≥ αν(i)γivi/2− αν(i)γπ(ν(i))vπ(ν(i)).

63



Summing over all players, and noticing that
∑

i αiγπ(i)vπ(i) = SW (π(b, γ), v, γ),

while
∑

i αν(i)γivi = OPT (v, γ), we arrive at the claimed bound that the GSP

auction game is (1/2, 1)-semi-smooth:

∑

i

ui(b
′
i, b−i, γ) ≥

1

2
OPT (v, γ)− SW (π(b, γ), v, γ).

To improve the bound to (1 − 1
e
, 1) we consider a randomized bid b′ rather

than the deterministic bid of vi/2 considered above. Bid b′i is a random variable

on [0, vi] with density f(y) = 1
vi−y

for y ∈ [0, vi(1 − 1
e
)] and f(y) = 0 otherwise.

We will show that

Eb′
i
[ui(b

′
i, b−i, γ)] ≥

(

1− 1

e

)

αν(i)γivi − αν(i)γπ(ν(i))bπ(ν(i)). (3.3)

By summing expression (3.3) for all i and using the fact that bπ(i) ≤ vπ(i) by the

non-overbidding assumption, we obtain that the game is (1− 1
e
, 1)-semi-smooth.

It remains to derive equation (3.3). We have that

Eb′i
[ui(b

′
i, b−i, γ)] ≥ Eb′i

[αν(i)γi(vi − b′i)1{γib′i ≥ γπ(ν(i))bπ(ν(i))}]

=

∫ vi(1− 1
e
)

0

αν(i)γi(vi − y)1{γiy ≥ γπ(ν(i))bπ(ν(i))}
1

vi − y
dy

= αν(i)γi

[

vi

(

1− 1

e

)

− γπ(ν(i))
γi

bπ(ν(i))

]+

≥
(

1− 1

e

)

αν(i)γivi − αν(i)γπ(ν(i))bπ(ν(i))

which implies (3.2), completing the proof of Lemma 3.2.4.

Combining Lemmas 3.2.3 and 3.2.4, we get the claimed bound on the price

of anarchy.

Theorem 3.2.5 The price of anarchy of the Generalized Second Price auction with un-

certainty (and with information asymmetries) is at most 2(1− 1/e)−1 ≈ 3.164.
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3.3 Pure Nash Equilibria in the Full Information Setting

In this section we turn our attention to the full information setting, where the

quality factors γ are fixed and common knowledge. Without loss of generality

we can assume that γ1v1 ≥ γ2v2 ≥ . . . ≥ γnvn. In this setting the strategy of a

player is a single bid bi ∈ [0, vi], again assuming that players do not overbid.

Our main result in this setting is the following:

Theorem 3.3.1 The (pure) price of anarchy of the Generalized Second Price auction in

the full information setting is at most the golden ratio 1
2
(1 +

√
5) ≈ 1.618. In other

words, for any fixed click-through-rates α, valuation profile v, and quality factors γ,

if b is a bid profile in pure Nash equilibrium, then SW (π(b), v) ≥ 1
1.618

· OPT (v) ≈

0.618 · OPT (v).

In the special case of 3 players, we show a matching upper and lower bound

of 1.259 for the Price of Anarchy. This provides a lower bound of 1.259 for the

general Price of Anarchy. Progress on closing the gap between the general lower

bound of 1.259 and the upper bound of 1.618 has been recently made in [21, 20],

which improve the upper bound from 1.618 to 1.282.

3.3.1 Weakly feasible allocations

A central concept in the proof of the results stated above is the idea of weakly

feasible allocations. Recall that each bid profile b defines an allocation π that is a

mapping from slots to players π : [n] → [n].
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Definition 3.3.2 (Weakly feasible allocations) We say that an allocation π is

weakly feasible if the following holds for each pair i, j of slots:

αj

αi
+

γπ(i)vπ(i)
γπ(j)vπ(j)

≥ 1. (3.4)

We also use the term weak feasibility condition to refer to inequality (3.4).

Lemma 3.3.3 If b is a Nash equilibrium of the GSP auction game, then the induced

allocation π satisfies the weak feasibility condition.

Proof : If j ≤ i the inequality is obviously true. Otherwise consider the player

π(j) in slot j. Since b is a Nash equilibrium, the player in slot j is happy with her

outcome and does not want to increase her bid to take slot i, so: αj(γπ(j)vπ(j) −

γπ(j+1)bπ(j+1)) ≥ αi(γπ(j)vπ(j) − γπ(i)bπ(i)) since bπ(j+1) ≥ 0 and bπ(i) ≤ vπ(i) then:

αjγπ(j)vπ(j) ≥ αi(γπ(j)vπ(j) − γπ(i)vπ(i)).

The concept of weakly feasible allocations encapsulates the fact that an alloca-

tion in equilibrium cannot be too far from the optimal. The optimal allocation

is such that π(i) = i, since both {αi} and {γivi} are sorted. If an allocation is

not optimal, then two slots i < j have advertisers assigned to them such that

π(i) > π(j), i.e., they are assigned in the wrong order. Equation (3.4) implies

that at least one of the two ratios is at least 1/2, and hence whenever advertisers

are assigned in the non-optimal order, then either (i) the two advertisers have

similar effective values for a click, or (ii) the click-through-rates of the two slots

are not very different; in either case their relative order does not affect the social

welfare very much.

From Lemma 3.3.3, we can almost directly obtain a bound of 2 for the Price

of Anarchy:
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Theorem 3.3.4 The (pure) price of anarchy of the Generalized Second Price auction in

the full information setting is at most 2.

Proof of Theorem 3.3.4 : Taking j = σ(i) in the definition of weakly feasible

allocations, we get that: ασ(i)γivi + αiγπ(i)vπ(i) ≥ αiγivi. Now, summing this for

each player i, we get

2 · SW (π(b), v) =
∑

i

ασ(i)γivi +
∑

i

αiγπ(i)vπ(i) ≥
∑

i

αiγivi = OPT (v).

3.3.2 Two and Three slots case

Theorem 3.3.5 For 2 players and 2 slots, the price of anarchy is exactly 1.25. For 3

players and 3 slots, the price of anarchy is exactly 1.259. By exactly we mean that there

is a particular GSP auction game with an equilibrium matching this bound.

Proof : For two slots: consider an example with two players with valuations 1

and 1/2 respectively, quality factors γ1 = γ2 = 1, and two slots with α1 = 1 and

α2 = 1/2. The bids b1 = 0 and b2 = 1/2 are at equilibrium, resulting in a social

welfare of 1, while the optimal social welfare is 1.25.

We can easily get a matching lower bound, by bounding the inefficiency of

weakly feasible allocations. We will assume γ1 = γ2 = 1, but we do so only not

to over-pollute the notation. The exact same proof works with generic quality

factos. We consider a GSP auction game with two slots with click-through-rates

α1 ≥ α2 = βα1, for β ∈ [0, 1] and two advertisers with valuations v1 ≥ v2 =
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λv1, for λ ∈ [0, 1]. The only non-optimal weakly feasible allocation π assigns

advertiser 1 to slot 2 and advertiser 2 to slot 1. Its social welfare is SW (π, v) =

α1v2 + α2v1 = α1v1(β + λ), while the optimal social welfare is OPT (v) = α1v1 +

α2v2 = α1v1(1 + βλ). Furthermore, the weak feasibility condition for advertiser

1 implies that α2v1 ≥ α1(v1 − v2), i.e., β ≥ 1− λ. We have that

OPT (v)

SW (π, v)
=

1 + βλ

β + λ
≤ 1 + (β + λ)2/4

β + λ
≤ 5/4

where the first inequality holds since the product βλ is maximized when β =

λ = (β+λ)/2 and the second inequality holds since β+λ ∈ [1, 2] and the function

1+x2/4
x

is non-increasing in x ∈ [1, 2].

For three slots: Fix one permutation π. If there is an i s.t. π(i) = i then

it is easy to show the Price of Anarchy is bounded by 1.25. This excludes all

but two allocations which we analyze below. They are: (i) π = [2, 3, 1] and (ii)

π = [3, 1, 2].

Case (i): π = [2, 3, 1]. We can write the price of anarchy as:

PoA =
α1v1 + α2v2 + α3v3
α3v1 + α1v2 + α2v3

Now, notice that the coefficient of v2 is smaller in the numerator than in the

denominator. The same is true for v3. Now, we use the following simple obser-

vation about ratios: if a ≤ b and v ≥ v′ then: x+av
y+bv

≤ x+av′

y+bv′
, which is natural,

because decreasing v we decrease the denominator more than the numerator.

Now, we use that technique to bound v2 and v3 in terms of v1:

• v2 ≥ α1−α3

α1
v1

• v3 ≥ α2−α3

α2
v1
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The first inequality comes from the Nash inequalities α3(v1 − 0) ≥ α1(v1 − b2) ≥

α1(v1 − v2) and the second comes from the fact that α3(v1 − 0) ≥ α2(v1 − b3) ≥

α2(v1 − v3). Now, we get:

PoA ≤
α1v1 + α2

[

α1−α3

α1
v1

]

+ α3

[

α2−α3

α2
v1

]

α3v1 + α1

[

α1−α3

α1
v1

]

+ α2

[

α2−α3

α2
v1

] (3.5)

Which allows us to eliminate v1 and optimize for α. By standard techniques

one can prove that the optimum is 1.25913 which is the root of a fourth degree

equation. The values for which it is maximized are α1 = 1, α2 = 0.55079, α3 =

0.4704.

Case (ii): π = [3, 1, 2]. We can write the price of anarchy as:

PoA =
α1v1 + α2v2 + α3v3
α2v1 + α3v2 + α1v3

and again we use the same trick of realizing that v1 ≤ α1

α1−α2
v3 by the fact that

player 1 doesn’t want to get the first slot, and v2 ≤ α1

α1−α3
v3 by the fact that player

2 doesn’t want to take the first slot. That gives us:

PoA ≤
α1

[

α1

α1−α2
v3

]

+ α2

[

α1

α1−α3
v3

]

+ α3v3

α2

[

α1

α1−α2
v3

]

+ α3

[

α1

α1−α3
v3

]

+ α1v3

which has the same solution 1.25913 when maximized. Now, it is maximized

for α1 = 1, α2 = 0.5295, α3 = 0.1458. In fact, it is not hard to see that those

two PoA expressions have the same maximum: given a point (1, α2, α3) (wlog

we can consider α1 = 1 because the expression is homogeneous), the second

expressions evaluates to the same value in the point (1, 1− α3,
α2−α3

α2
).
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We proved that 1.259 is the tight Price of Anarchy for 3 slots (we can use

the optimization results in Case(i) to generate a tight example). We also con-

jecture that this is the correct Price of Anarchy for any n ≥ 3. Moreover, we

conjecture that the allocation maximizing the Price of Anarchy for n slots is

π = [2, 3, 4, . . . , n, 1], i.e., the player with higher value takes the bottom slot and

all players i > 1 take slot i−1. Then, if this is the case, we can prove our desired

theorem by showing the following result:

Lemma 3.3.6 If an equilibrium with n players and n slots is such that σ(1) = n and

σ(i) = i− 1 for the other players, then the Price of Anarchy is 1.25913.

Proof : Following a proof scheme similar to used in the previous Theorem we

can write:

PoA =
α1v1 +

∑

i>1 αivi

αnv1 +
∑

i>1 αi−1vi
≤

α1 +
∑

i>1 αi

[

αi−1−αn

αi−1

]

αn +
∑

i>1 αi−1

[

αi−1−αn

αi−1

]

This boils down to optimizing a function on multiple variables. It can be shown

using standard techniques from optimization that the optimum is the same of

equation 3.5. In fact, if (α1, α2, 1) is a solution to 3 slots, then (α1, α2, 1, . . . , 1) is

a solution for n slots.

3.3.3 Golden Ratio Upper Bound for the Price of Anarchy

Now, we are ready to prove the main result in this section, Theorem 3.3.1.

Proof of Theorem 3.3.1 : As before, we prove the desired bound for all weakly

feasible permutations. We also assume here γi = 1 for all i not to overcomplicate

the notation. The exact same proof works for generic quality factors.

70



We define a sequence of values rk so that we can prove that for k slots social

welfare is at least an rk fraction of the optimum, and prove that rk converges to

the desired bound. Let r2 = 1.25 and suppose we have r2, r3, ..., rn−1 and that

this property holds for them. Let’s calculate some ”small” value of rn so that the

property still holds.

Again, consider parameter α, v, a weakly feasible permutation π and let’s

assume i = π−1(1) and j = π(1) . If i = j = 1, this is an easy case and it is

straightforward to see that in this case the price of anarchy can be bounded by

rn−1. If not, assume without loss of generality that i ≤ j (since equation 3.4 is

symmetric in α and v we can just interchange the roles of them in the proof if

i > j). Let β = α1

αi
and γ = v1

vj
. We know that 1

β
+ 1

γ
≥ 1. Following the lines of

the proof of the last theorem we have:

∑

k

αkvπ(k) = αiv1 +
∑

k 6=i

αkvπ(k) ≥
1

β
α1v1 +

1

rn−1

(

i
∑

k=2

αk−1vk +
n
∑

k=i+1

αkvk

)

≥

=
1

β
α1v1 +

1

rn−1

[

i
∑

k=2

(αk−1 − αk)vk +
∑

k>1

αkvk

]

≥

≥ 1

β
α1v1 +

1

rn−1
(α1 − αi)vi +

1

rn−1

∑

k>1

αkvk

Now, we can use i ≤ j to say: vi ≥ vj =
1
γ
v1 ≥

(

1− 1
β

)

v1.

∑

k

αkvπ(k) ≥
[

1

β
+

1

rn−1

(

1− 1

β

)2
]

α1v1 +
1

rn−1

∑

k>1

αkvk

So, we would like to find some rn such that we can say that
∑

k αkvπ(k) ≥
1
rn

∑

k αkvk for all β ≥ 1, so we would like to have: 1
rn

≤

min

{

1
rn−1

, 1
β
+ 1

rn−1

(

1− 1
β

)2
}

for any β ≥ 1. But notice some other bound we
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can get is:

∑

k

αkvπ(k) ≥
1

γ
α1v1 +

1

rn−1

∑

k>1

αkvk ≥
(

1− 1

β

)

α1v1 +
1

rn−1

∑

k>1

αkvk

by following the lines of the proof of last theorem, but removing slot 1 and

advertiser j in the inductive step. So another alternative is to get: 1
rn

≤

min
{

1
rn−1

, 1− 1
β

}

for every β ≥ 1. So if we can get 1/rn bounded by the maxi-

mum of those two quantities, we are done. Summarizing that, we need:

rn ≥ max







rn−1,

[

max

{

1− 1

β
,
1

β
+

1

rn−1

(

1− 1

β

)2
}]−1







for all β ≥ 1.

Now we need to evaluate for which value of 1
β
∈ (0, 1] we have the mini-

mum for max

{

1− 1
β
, 1
β
+ 1

rn−1

(

1− 1
β

)2
}

. The minimum can be in two points:

the minimum of the quadratic function or the intersection between those two

functions. They intersect at 1
β
= −r + 1 +

√
r2 − r (where r stands for rn−1) and

the quadratic minimum is at 1 − 1
2
r. So, for r ≥ 4

3
, the minimum occurs in the

intersection and for r < 4
3
, it occurs in the quadratic minimum. So:

rn =















(

1− rn−1

4

)−1

, rn−1 <
4

3
(

rn−1 −
√

r2n−1 − rn−1

)−1

, rn−1 ≥
4

3

since we want the smallest possible ratio. This allows to define rk recursively

from r2 = 1.25 and it is easy to see that the sequence monotonically converges

to the fixed point of that function which is the golden ration ϕ = 1+
√
5

2
≈ 1.618.

This happens because the function that maps rn−1 to rn is non-decreasing and

has a fixed point in ϕ, so if rn−1 ≤ ϕ then rn ≤ ϕ.
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3.4 Computational search for the GSP Price of Anarchy

In this section we describe how we can computationally search for lower

bounds on the pure Price of Anarchy for GSP. In fact, this approach is not only

useful to produce lower-bounds, but was very useful in providing us intuition

to prove the results in the previous sections.

It is easy to see that we can focus our attention to the case where γ1 = . . . =

γn = 1, since given any instance with α, γ, v, b we can substitute by an instance

α, γ′, v′, b′ where γ′
i = 1, v′i = γivi and b′i = γibi. If b is a pure Nash equilibrium of

the game induced by α, γ, v then b′ is a Nash equilibrium of the game induced

by α, γ′, v′. Moreover, the ratio between the social welfare and the optimum is

the same.

Consider the following problem: what is the worse Price of Anarchy one can

obtain for an instance with n agents and click-through-rates α1 ≥ . . . ≥ αn ≥ 0 ?

The Price of Anarchy should look like:

β =

∑

i αivi
∑

i αivπ(i)
(3.6)

for some permutation π : [n] → [n]. This permutation should be such that there

is a bid profile that supports it, i.e, a set of bids b1, . . . , bn such that:

bi ≤ vi, ∀i

bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(n) ≥ 0

αj · (γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αk · (γπ(j)vπ(j) − γπ(k)bπ(k)), ∀k < j

αj · (γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αk · (γπ(j)vπ(j) − γπ(k+1)bπ(k+1)), ∀k ≥ j

(3.7)

where the first set of constraints is the no-overbidding condition, the second
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set of constraints is the fact that the bids generate that permutation and the

third set indicates that b form a Nash equilibrium. We should also impose the

following condition on the valuation vector such that
∑

i αivi is the optimum:

v1 ≥ v2 ≥ . . . ≥ vn ≥ 0 (3.8)

Essentially, we want to solve the problem:

max β s.t. constraints (3.6), (3.7), (3.8)

This is not quite a linear program yet, since equation 3.6 is non-linear. How-

ever, this is easy to solve. Notice that the problem is homogeneous in v, b, i.e.,

given any scalar s > 0, if (β, v, b) is a solution, then (β, s ·v, s ·b) is also a solution.

So, we can substitute equation 3.6 by:

β =
∑

i

αivi

1 =
∑

i

αivπ(i)

(3.9)

Now, we can write it as the LP:

max β s.t. constraints (3.9), (3.7), (3.8)

Call LP(α, π) the solution of the LP above for some α = (α1, . . . , αn) and

a permutation π of [n]. We note that this program is always feasible taking

v = (1, 1, . . . , 1), bπ(j) = 1 − αn

αj
and β = 1, this gives us a feasible solution.
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Also, it is not hard ot see that the feasible region is bounded. Therefore, there is

always a bounded optimal solution.

Together with this thesis we provide a code (in Octave) to solve this problem.

This is in the file gsp poa.m which implements the function

[beta, v, b] = gsp poa(pi, alpha)

which takes a permutation and a vector of click-through-rates and returns the

worse Price of Anarchy one can get with those click-through-rates and with this

permutation.

The pure Price of Anarchy of GSP for n slots is given by:

PoA(n) = max
α∈In

max
π∈Sn

LP(α, π)

where In is the set of vectors α = (α1, . . . , αn) such that 1 ≥ α1 ≥ . . . ≥ αn ≥ 0

and Sn is the set of permutations on n elements.

This approach is less useful for proving upper-bounds, but more for compu-

tationally searching for lower bounds on the actual Price of Anarchy. In fact, we

we take In(ǫ) to be the set of α ∈ In where all coordinates are integral multiples

of ǫ.

Since there are around ǫ−n/n! vectors in In(ǫ), we can compute the lower

bound: maxα∈In(ǫ) maxπ∈Sn LP(α, π) by solving the problem LP(α, π) roughly

ǫ−n times. By observing that the problem is homogeneous in α and we can take

α1 = 1 w.l.o.g., we can reduce it to ǫ−n+1. In the file lower bound poa.m we

provide a code in Octave to compute this lower bound. In the following table,

we provide the results for running this code for n = 2, 3, 4, 5:
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n ǫ used PoA α v b

2 0.01 1.2500 [1.0, 0.5] [1.0, 0.5] [0.0, 0.5]

3 0.01 1.2591 [1.0, 0.55, 0.47] [0.925, 0.490, 0.134] [0.0, 0.491, 0.135]

3.5 Quality of Learning Outcomes in GSP

In this section, we bound the average quality of outcomes in a repeated play of

a GSP auction game where players employ strategies that guarantee no external

regret. In both the full information setting and the setting with uncertainty, we

can reduce the problem over declaration sequences to a problem over distribu-

tions. This will allow us to adapt our earlier bounds on the price of anarchy

from Sections 3.2 and 3.3 to bound the price of total anarchy.

3.5.1 Learning in the full information setting

We will first focus upon the full information setting of the GSP auction. Recall

that, in this model, the valuation profile v and quality factors γ are fixed and

common knowledge. As in the previous section, we will assume that γ1v1 ≥

γ2v2 ≥ . . . ≥ γnvn.

We will begin by proving a relationship between the price of total anarchy

and the set of coarse correlated equilibria for the GSP auction in the full informa-

tion model. Given a valuation profile v, a distribution D over bid profiles is

called a coarse correlated equilibrium if

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i, b−i)], ∀i, b′i.
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As we shall show, the price of total anarchy can be bounded by considering the

social welfare generated at any coarse correlated equilibrium.

Lemma 3.5.1 The price of total anarchy in the full information setting is at most

sup
v,D∈ccNash

OPT (v)

Eb∼D[SW (π(b), v)]

where ccNash is the set of coarse correlated equilibria.

Proof : Consider a declaration sequenceD = (b1, . . . , bt, . . .) in the full informa-

tion case. For each T let DT be the distribution over bid profiles where each bt

for t ≤ T is drawn with probability 1
T
. Proving that the price of total anarchy is

bounded by η is equivalent to showing that:

lim inf
T

Eb∼DT [SW (π(b), v)] ≥ 1

η
OPT (v).

Since the set of all possible bid profiles is compact, one needs to prove that for

all distributions D such that there is a subsequence of {DT}T converging in

distribution to Dwe have:

Eb∼D[SW (π(b), v)] ≥ 1

η
OPT (v).

It is therefore sufficient to show that such a D is a coarse correlated equilib-

rium. We note that the fact that the declaration sequence D minimizes external

regret implies that, for each distribution D which can be written as the limit of

a subsequence of {DT}T , it holds that

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i, b−i)], ∀i, b′i

as required.
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Using this connection to coarse correlated equilibria, we are able to obtain

a bound of 3.16 on the price of total anarchy of the GSP auction using semi-

smoothness techniques in Section 3.2.

Theorem 3.5.2 The price of total anarchy of the Generalized Second Price auction in

the full information setting is at most 3.164.

3.5.2 Learning with uncertainty

Let us now turn to the model of learning outcomes with uncertainty. As in

the full information model, we can define a Bayesian version of the coarse cor-

related equilibrium. A Bayesian coarse correlated equilibrium is a mapping from

valuation profiles v to distributions over bid profiles D(v) such that

Ev,γ,b∼D(v)[ui(b, γ)|vi] ≥ Ev,γ,b∼D(v)[ui(b
′
i, b−i, γ)|vi], ∀i, vi, b′i.

Similarly to Lemma 3.5.1, we can show that the price of total anarchy with un-

certainty can be bounded by considering the social welfare generated at any

Bayesian coarse correlated equilibrium.

Lemma 3.5.3 The price of total anarchy with uncertainty is at most

sup
F,G,D(·)∈ccBayesNash

Ev,γOPT (v, γ)

Ev,γ,b∼D(v)[SW (π(b), v, γ)]

where ccBayesNash is the set of Bayesian coarse correlated equilibria.

The arguments in the proof of Lemma 3.2.3 can be used with essentially no

change to show that (λ, µ)-semi-smoothness implies a bound of (µ+ 1)/λ to the

price of total anarchy with uncertainty. From this, we know that:
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Theorem 3.5.4 The price of total anarchy of the Generalized Second Price auction with

uncertainty is bounded by 3.164.
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CHAPTER 4

REVENUE OF EQUILIBRIA IN GSP

In this chapter we are mainly concerned with bounding the revenue that is

extracted by the GSP mechanisms. We will essentially be concerned with com-

paring the revenue extraction power of GSP in comparison to the VCG mech-

anism described in section 2.6. For the (single-keyword) sponsored search en-

vironment defined in section 2.7.1, it is easy to check that the VCG mechanism

assumes the following form.

1. the auction elicits bids bi from each agent, which correspond to their re-

ported value per click

2. the agents are sorted by bid, i.e., the highest bid is assigned to the top slot

and so on...

3. player i’s payment per click is: pi =
1

ασ(i)

[

∑n
j=σ(i)+1(αj−1 − αj)bπ(j)

]

Notice that above we ignore quality scores, i.e., we assume they are uniform

γi = 1. We will do this assumption throughout this section.

VCG is a truthful mechanism: regardless of what the other players are doing,

it is a weakly dominant strategy for player i to report his true valuation. The

resulting outcome of VCG is therefore social-welfare optimal and the revenue is

RevV CG(v) =
∑

i

∑

j>i

(αj−1 − αj)vj =
n
∑

i=2

(i− 1)(αi−1 − αi)vi.

Wewill also consider the comparison between VCG and GSP in the presence

of a reserve price. Let VCGr be the VCGmechanism with reserve price r, where

we discard all players with bids smaller then r and run the VCG mechanism on
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the remaining players, who then pay price per clickmax{pi, r}. In the analogous

variant of the GSP mechanism, which we call GSP with reserve price r (GSPr),

we also discard all players with bids smaller then r, the remaining players are

allocated using GSP, and the last player to be allocated pays price r per click.

Below, we represent the special classes of equilibria that have been studied

in the literature, which we call equilibrium hierarchy for GSP. We define and

discuss them in Section 4.3 :










VCG

outcome











⊆











envy-free

equilibria











⊆











efficient

Nash eq











⊆











all

Nash











4.1 Revenue with Uncertainty

In this section we consider the revenue properties of GSP at Bayes-Nash equi-

librium. We prove that if agent values are drawn iid from a sufficiently nice

distribution (i.e. a distribution satisfying regularity, which we will soon define)

and GSP is paired with an appropriate reserve price, the revenue generated at

equilibrium will be within a constant factor of the VCG revenue with optimal

reserve, the revenue-optimal mechanism over all Bayes-Nash implementations.

So our result implies that GSP revenue is within a constant factor of the optimal.

We will first consider a special case of regular distributions, the so called MHR

distributions, then prove our result in the more general setting where values are

drawn from regular distributions.

In what follows, we start by providing a general set of tools for studying

revenue in auctions. In particular, we precisely define regular and MHR dis-
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tributions and show the format of the revenue-optimal auctions for the spon-

sored search setting. Then we we show the use of reserve prices is crucial: there

are instances in which the GSP auction without reserve generates no revenue,

whereas the VCG auction generates positive revenue.

After we present the necessary set of tools (section 4.1.1) and motivate the

need for reserve prices (section 4.1.2), we proceed to our main results, which are

bounds on the revenue extraction power of GSP (sections 4.1.3, 4.1.4 and 4.1.5).

4.1.1 Useful set of tools

A useful tool for studying revenue in the Bayesian setting is Myerson’s Lemma,

which can be rephrased in the AdAuctions setting as follows. Given a dis-

tribution F over agent values, the virtual valuation function is defined by

φ(x) = x− 1−F (x)
f(x)

.

Lemma 4.1.1 (Myerson’s Lemma [64]) At any Bayes-Nash equilibrium of an

AdAuction mechanism, we have that, for all i, E[ασ(i)pi] = E[ασ(i)φ(vi)] where pi is

the payment per click of player i and ασ(i) is the number of clicks received by agent i,

and expectation is with respect to v ∼ F.

We say that a distribution is regular if φ(x) is a monotone non-decreasing

function. For regular distributions, it follows directly from Myerson’s Lemma

that the revenue-optimal mechanism for AdAuctions corresponds to running

VCGwith Myerson’s reserve price r, which is the largest value such that φ(r) =

0. We will refer to this asMyerson’s mechanism, V CGr.
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Running GSP (or VCG) with reserve price r means not allocating any user

with value vi < r and running GSP (or VCG) with the remaining agents. For the

allocated agents, the mechanism charges per click the maximum between the

GSP (VCG) price and r.

A special class of regular distributions is the monotone hazard rate distri-

butions (MHR), which are the distributions for which f(x)/(1 − F (x)) is non-

decreasing.

4.1.2 Revenue without Reserves: Bad Examples

We start by providing an example in the Bayesian setting where VCG generates

positive revenue and GSP has a Bayes-Nash equilibrium that generates zero

revenue. Consider three players with iid valuations drawn uniformly from [1, 2]

and three slots with α = [1, 0.5, 0.5]. Let v(i) be the ith largest valuation (which is

naturally a random variable defined by v). We have

E[RevV CG(v)] = E[0.5v(2)] =
3

4
.

Now, consider the following equilibrium of GSP: bi(vi) = 0 for i = 2, 3 and

b1(v1) = v1. Clearly player 1 is in equilibrium. To see that players i = 2, 3 are

in equilibrium, suppose player i has valuation vi > 0. Then his expected utility

when bidding any value in [0, 1] is 0.5vi, whereas if he changed his bid to some

b > 1 his utility would be

E[ui(b
′, b−i)|vi] = 0.5vi + 0.5viP(v1 ≤ b′)−

∫ b′

0

v1dP(v1) =

= 0.5vi + 0.5vi(b
′ − 1)− (b′)2 − 1

2
≤

≤ 0.5vi.
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Thus agent i cannot increase his expected utility by placing a non-zero bid.

4.1.3 Warmup: MHR Valuations

We now show that if valuations are drawn from a MHR distribution and GSP

is paired with the Myerson reserve price, the resulting mechanism extracts a

constant fraction of the optimal revenue.

In what follows we will write x+ to denote max{x, 0}.

Theorem 4.1.2 If valuations are drawn iid from a MHR distribution F and r is the

Myerson reserve price for F , then the expected revenue of GSPr at any Bayes-Nash

equilibrium is at least 1
6
of the optimal revenue.

Our proof will make use of the fact that, for MHR distributions, φ(x) ≥ x −

r for any x ≥ r. To see this, note that x − φ(x) = 1−F (x)
f(x)

≤ 1−F (r)
f(r)

= r by

monotonicity and the definition of Myerson’s reserve price.

Proof : Let b be a Bayes-Nash equilibrium of GSPr, and let Revr(v) be the

expected revenue of GSPr at this equilibrium. Let RevV CG
r (v) be the VCGr

revenue. Let random variable µ(i) denote the slot occupied by player i in

the optimal (i.e. efficient) allocation. By Myerson’s Lemma, E[RevV CG
r (v)] =

E[
∑

i αµ(i)φ(vi)
+]. For each player i, let Ei

1 denote the event that bπ(µ(i)) < vi/2,

and let Ei
2 denote the event that bπ(µ(i)) ≥ vi/2. We will consider each of these

events in turn. For the first event, we’ll show that player i contributes to the

revenue at least 1/2 his contribution in the optimum. Consider a player i with
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value vi. We have

Ev−i

[

αµ(i)
vi
2
1{Ei

1}
]

≤ Ev−i

[

ui

(vi
2
, b−i

)]

≤ Ev−i
[ui(b)] ≤ Ev−i

[ασ(i)vi]

where the first inequality is due to the definition ofEi
1 implying that a bid of vi/2

would win slot µ(i) (or better) at price no more than vi/2; the second follows

since b is a Bayes-Nash equilibrium, and the third comes from the definition of

utility. Notice that all the expectations are taken over v−i and vi is a constant, so

we can divide by vi, multiply by φ(vi)
+, take expectations over vi and sum over

all players i to obtain

∑

i

Ev[αµ(i)φ(vi)
+
1{Ei

1}] ≤ 2
∑

i

Ev[ασ(i)φ(vi)
+] = 2Ev[Revr(v)].

For the second event, consider again a player iwith value vi. We will show that

the player who gets slot µ(i) contributes to the revenue. We have

Ev−i

[

αµ(i)
φ(vi)

+

2
1{Ei

2}
]

≤ Ev−i

[

αµ(i)
vi
2
1{Ei

2}
]

≤ Ev−i
[αµ(i)vπ(µ(i))]

≤ Ev−i
[αµ(i)(r + φ(vπ(µ(i)))

+)]

where we used the fact that x ≥ φ(x)+ ≥ x−r for all x. Taking expectations over

vi, summing over all players, and noting that event Ei
2 implies that vπ(µ(i)) ≥ r,

we obtain

∑

i

Ev[αµ(i)φ(vi)
+
1{Ei

2}] ≤ 2
∑

i

Ev[ασ(i)φ(vi)
+] + 2

∑

i

ασ(i)r1{vi ≥ r}.

Since GSPr extracts a revenue of at least r per click from every bidder with

vi > r, we have Ev[Revr] ≥ Ev[
∑

i ασ(i)r1{vi ≥ r}]. We conclude that
∑

i Ev−i
[αµ(i)φ(vi)

+
1{Ei

2}] ≤ 4E[Revr]. Combining our analysis for the two
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events, we have

E[RevV CG
r (v)] = E

[

∑

i

αµ(i)φ(vi)
+(1{Ei

1}+ 1{Ei
2})
]

≤ 2E[Revr(v)] + 4E[Revr(v)] = 6E[Revr(v)].

4.1.4 Regular valuations

We now show that if player valuations are drawn from a regular distribution,

then there exists an r′ such that running GSP with reserve r′ extracts a con-

stant fraction of the optimal revenue. The bound for the MHR bounding the

contribution of the player at slot µ(i) took advantage of the fact that in a MHR

distribution φ(x) ≥ x − r, which may not be true in a regular distribution. In-

stead, we will use that the player in slot µ(i)− 1 pays at least the bid in slot µ(i).

This leaves us with the added difficulty in bounding the revenue generated by

the first slot. To address this issue, we make use of the well-studied Prophet

Inequalities [49, 50, 46].

A simplified version of the Prophet Inequality is as follows. Suppose zi are

independent non-negative random variables. Given any t ≥ 0, write yt for the

value of the first zi (by index) satisfying zi > t (or 0 if there is no such zi).

Then the Prophet Inequality states that there exists some t ≥ 0 such that E[yt] ≥
1
2
E[maxi zi]. Since the proof is of this fact is very short, we include it here for

completness.

Theorem 4.1.3 (Prophet Inequality [46]) Given independent random variables

z1, . . . , zn if one defines t as the solution of the equation t =
∑n

i=1 E(zi − t)+, then by
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defining yt = zi, where i is the smallest index such that zi ≥ t, and zero if max zi < t,

then:

E[yt] ≥
1

2
E[max

i
zi]

Proof : We can upper bound E[maxi zi] as :

E[max
i

zi] ≤ t+ E[max
i

(zi − t)+] ≤ t + E[
∑

i

(zi − t)+] = 2t

and lower bound E[yt] as:

E[yt] = tP(max
i

zi ≥ t) +
∑

i

E[(zi − t)+| max
j=1..i−1

zj < t]P( max
j=1..i−1

zj < t) ≥

≥ tP(max
i

zi ≥ t) +
∑

i

E[(zi − t)+]P(max
i

zi < t) = t

Notice that since t is increasing and
∑n

i=1 E(zi − t)+ is decreasing, a solution

always exists if each zi has a distribution that has positive density everywhere.

If this is not the case, the prophet inequality still holds by taking t to be either the

supremum of {t : t ≤∑n
i=1 E(zi − t)+} or the infimum of {t : t ≥∑n

i=1 E(zi −

t)+} (whichever results in larger E[yt]).

As has been noted elsewhere [22], the Prophet Inequality has immediate con-

sequences for the revenue of auctions with anonymous reserve prices. The fol-

lowing lemma encapsulates the observation we require.

Lemma 4.1.4 If vi are drawn iid from a regular distribution then there exists r2 ≥ 0

such that, writing Z for the event that maxi vi ≥ r2, E[maxi φ(vi)
+|Z]P(Z) ≥

1
2
E[maxi φ(vi)

+].

Proof : (sketch) This follows by applying the Prophet Inequality to virtual val-

ues zi = φ(vi) and noting that regularity implies that vi ≥ r2 iff φ(vi) ≥ φ(r2).
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It is important to remark that the proof of the Prophet Inequality is construc-

tive. If one is able to efficiently compute E[(vi − t)+] for every t, then we can

compute r2 exactly using binary search.

Our approach will now be to analyze the revenue of GSP under two differ-

ent reserve prices. An argument similar to Theorem 4.1.2 shows that GSP with

Myerson reserve obtains a constant fraction of the optimal revenue for all slots

other than the first slot. On the other hand, GSP with reserve r2 from Lemma

4.1.4 will obtain at least half of the optimal revenue generated by the first slot.

One of these two reserve prices must therefore generate a constant fraction of

the optimal revenue.

Theorem 4.1.5 If valuations vi are drawn iid from a regular distribution F , then there

is a reserve price r such that the expected revenue of GSPr at any Bayes-Nash equilib-

rium is at least 1
6
of the optimal revenue.

Proof : Define RevV CG
r (v), Revr(v), and µ(i) as in Theorem 4.1.2. Let r1 de-

note the Myerson reserve price for F . By Myerson’s Lemma, E[RevV CG
r (v)] =

E[
∑

i αµ(i)φ(vi)
+]. For each player i, we define the following three events:

• Ei
1 = { bπ(µ(i)) < vi/2 and µ(i) 6= 1 }

• Ei
2 = { bπ(µ(i)) ≥ vi/2 and µ(i) 6= 1 }

• Ei
3 = { µ(i) = 1 }

We wish to bound the virtual value of the optimal allocation, conditioning on

each of these events in turn. For the first event, we proceed precisely as in

Theorem 4.1.2 to obtain

∑

i

Ev−i
[αµ(i)φ(vi)

+
1{Ei

1}] ≤ 2E[Revr1 ].
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For the second event, we use the revenue from slot µ(1)−1. Let random variable

pi denote the payment per click of the player in slot i. Then for all v,

αµ(i)φ(vi)
+
1{Ei

2} ≤ αµ(i)vi1{Ei
2} ≤ 2αµ(i)−1pµ(i)−11{Ei

2}

where the second inequality follows since Ei
2 implies pµ(i)−1 = bµ(i) ≥ vi/2.

Therefore, summing over all agents i and taking expectations, we get

Ev

[

∑

i

αµ(i)φ(vi)
+
1{Ei

2}
]

≤ 2Ev

[

∑

i

αipi

]

= 2E[Revr1].

Finally, for event Ei
3, consider setting the reserve price to be r2 from the state-

ment of Lemma 4.1.4 (with distribution F ). Note that

E

[

∑

i

αµ(i)φ(vi)
+
1{Ei

3}
]

= α1E[max
i

φ(vi)
+].

On the other hand, setting reserve price r2 for GSP we get

E[Revr2 ] ≥ α1E[max
i

φ(vi)
+ | max

i
vi ≥ r2]P(max

i
vi ≥ r2) ≥

1

2
α1E[max

i
φ(vi)

+]

where the first inequality follows by considering only the expected virtual value

due to the first slot and the last inequality follows from Lemma 4.1.4. Combin-

ing our analysis for each of the three cases, we have

E[RevV CG
r ] = E

[

∑

i

αµ(i)φ(vi)
+(1{Ei

1}+ 1{Ei
2}+ 1{Ei

3})
]

≤ 4E[Revr1 ] + 2E[Revr2 ]

and hencemax{E[Revr1 ],E[Revr2]} ≥ 1
6
E[RevV CG

r ].

4.1.5 Bayesian Revenue with Well-separated CTRs

Another way to bound the revenue of GSP in settings of incomplete informa-

tion, without imposing reserve prices, is to assume that the slot click-through-
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rates are well separated, in the sense of [53]. We say that click-through-rates are

δ-well separated if αi+1 ≤ δαi for all i.

Lemma 4.1.6 If click-through-rates are δ-well separated, then bidding bi(vi) < (1 −

δ)vi is dominated by bidding (1− δ)vi.

Proof : Suppose player i bids bi < (1 − δ)vi. If he increases his bid to

b′i = (1 − δ)vi then with some probability he still gets the same slot (event

S) and with some probability he gets a better slot (event B). Then clearly

E[ui(bi, b−i)|vi] ≤ E[ui(b
′
i, b−i)|vi] since the expectation conditioned to S is the

same and conditioned to B it can only increase by changing the bid to b′i. To see

that, let απ(i) be the slot player i gets under bi and απ′(i) the slot he gets under b
′
i.

Conditioned on B we know that απ′(i) ≥ δ−1απ(i), and this generates value for

bidder i of at least απ′(i)(vi − b′i), while the value with bid bi was at most απ(i)vi,

which implies the claim:

E[ui(bi, b−i)|vi, B] ≤ E[απ(i)vi|vi, B] ≤ E[δαπ′(i)vi|vi, B] =

= E[απ′(i)(vi − (1− δ)vi)|vi, B] ≤

≤ E[ui(b
′
i, b−i)|vi, B].

Recall that under truthful bidding, the revenue of GSP is at least the rev-

enue of VCG. If one eliminates the strategies bi(vi) < (1 − δ)vi from the players

strategy set, then it is easy to see that any Bayesian-Nash equilibrium b has high

revenue.
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Corollary 4.1.7 If click-through-rates are δ-well separated, and all players play un-

dominated strategies, then

Ev[Rev(b(v))] ≥ (1− δ)Ev[RevV CG(v)].

Further, for any reserve price r, we also get

Ev[Revr(b)] ≥ (1− δ)Ev[RevV CG
r (v)].

Next we consider whether this bound on GSP revenue, with respect to the

expected GSP revenue when all players report truthfully, continues to hold if

agents do not eliminate dominated strategies. That is, we consider settings of

limited rationality in which players may not be able to find dominated strate-

gies. If we allow players to use dominated strategies, then we might have equi-

libria with very bad revenue compared to the expected revenue when agents

bid truthfully, as one can see in the following example:

Example 4.1.8 Consider two players with iid valuations vi ∼ Uniform([0, 1]) and

two slots with α = [1, 1 − ǫ]. Then VCG generates revenue E[RevV CG(v)] =

E[ǫmin{v1, v2}] = O(ǫ), and if agents report truthfully the GSP auction generates

revenue E[min{v1, v2}] = O(1). However, consider the following equilibrium:

b1(v1) =











ǫ(1− δ), v1 ≥ ǫ(1− δ)

ǫv1, v1 < ǫ(1− δ)

b2(v2) =



























ǫ, v2 ≥ 1− δ

ǫ2(1− δ), ǫ(1− δ) ≤ v2 < 1− δ

ǫv2, v2 < ǫ(1− δ)

It is not hard to check that this is an equilibrium. In fact, for two player GSP in the

Bayesian setting, playing (α1 − α2)vi/α1 is a best reply - and any bid that gives the
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player the same outcome is also a best reply. So, in the above example, one can simply

check that the bids generate the same utility as bidding bi(vi) = ǫvi. This example

generates revenue ERev(b) = O(ǫ(ǫ + δ)), so taking δ = O(ǫ) in the above example

give us O(ǫ2) revenue.

However, this is a feature of having only 2 players, as shown in the following

theorem, which is a version of Corollary 4.1.7 that doesn’t depend on eliminat-

ing dominated strategies.

Theorem 4.1.9 With n players with iid valuations vi and δ-well separated click-

through-rates, then for all Bayes-Nash equilibria b in which agents do not overbid,

E[Rev(b)] ≥ n− 2

n
(1− δ)E[RevV CG(v)].

Proof : We will prove the stronger result that the expected GSP revenue at

equilibrium is within a factor of n−2
n
(1 − δ) of the expected GSP revenue when

agents report truthfully. We first claim that, for a profile b in Bayesian-Nash

equilibrium and any two players i and j, we have that

Pv∼F [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] = 0.

To see this, suppose the contrary. Then there is ǫ′ ≪ ǫ such that if we take

F ′ = F |[v0−ǫ′,v0+ǫ′] then

Pv∼F ′[bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] > 0.

For ǫ′ small enough v0 = v0 − ǫ and some ǫ′′ < ǫ, we have

Pv∼F ′[bi(v) < (1− δ)v0 − ǫ′′, bj(v) < (1− δ)v0 − ǫ′′] > 0.
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Now pick vi, vj in this interval such that Pv∼F ′ [bi(v
i) ≤ bi(v) < (1 − δ)v0] > 0

and the same for j. By lemma 4.1.6, playing (1 − δ)vi is a best response, then

for player j for example, it can’t be the case that any of the other players play

between bj(v
j) and (1− δ)vj with positive probability. Therefore

Pv∼F ′ [bj(v) ∈ [bi(v
i), (1− α)vi)] = 0

Pv∼F ′ [bi(v) ∈ [bj(v
j), (1− α)vj)] = 0

but notice this is a contradiction. This completes the proof of the claim.

Now, we can think of the procedure of sampling v iid from F in the following

way: sample v′′i ∼ F iid, let v′i be the sorted valuations, and then apply a random

permutation τ ∈ Sn to the values so that vi = v′τ(i). Notice that v is iid and now,

notice that with ≥ 1 − 2
n
probability, v′i and v′i+1 will generate (1 − δ)v′i and

(1− δ)v′i+1 bids producing (1− δ)αiv
′
i+1 revenue, therefore

E[Rev(v)] ≥ E

[

∑

i

(

1− 2

n

)

(1− δ)αiv
′
i+1

]

≥ n− 2

n
(1− δ)E

[

RevV (v)
]

.

4.2 Revenue in Full Information GSP

We now wish to compare the revenue properties of GSP and VCG in the full

information setting. We start by giving examples showing that there are no

universal constants that bound these two quantities. Then we introduce a new

benchmark related to VCG, and show that the GSP revenue is not too low rela-

tive to this benchmark.
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4.2.1 Full Information Revenue: Examples

Unfortunately, there are no universal constants c1, c2 > 0 such that for every full

information AdAuctions instance α, v and for all equilibria b of GSP it holds that

c1 ·RevV CG(v) ≤ Rev(b) ≤ c2 ·RevV CG(v).

In fact, GSP can generate arbitrarily more revenue than VCG and vice-versa.

For example, consider two players with α = {1, 0}, v = {2, 1}. Then VCG

generates revenue 1, but GSP has the Nash equilibrium b = [2, 0] that generates

no revenue.

As a counter-example for the second inequality, consider the following in-

stance: α = {1, 1− ǫ}, v = {ǫ−1, 1}. Notice that the revenue produced by VCG is

ǫ, while GSP has the equilibrium b = [1, 1] generating revenue 1.

4.2.2 Revenue Bound in Full Information

Next, we will prove that the GSP revenue cannot be much less than a revenue

benchmark based on the VCG auction. Intuitively, the difficulty behind our bad

examples is in extracting revenue from the player with the largest private value.

Motivated by this, we consider the following benchmark:

B(v) =
n
∑

i=2

pV CG
i ασ(i) =

n
∑

i=2

∑

j>i

(αj−1 − αj)vj =

n
∑

i=2

(i− 2)(αi−1 − αi)vi

which is the VCG revenue from players 2, 3, . . . , n. Recall that in the full infor-

mation setting we assumed that players are numbered such that v1 ≥ v2 ≥ . . ..

We show that the GSP revenue is always at least half of this benchmark at any

equilibrium. Thus, unless VCG gets most of its revenue from a single player,

GSP revenue will be within a constant factor of the VCG revenue.
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Theorem 4.2.1 Given an AdAuctions instance α, v, and a Nash equilibrium b of GSP,

we haveRev(b) ≥ 1
2
B(v), and this bound is tight.

We prove Theorem 4.2.1 in two steps. First we define the concept of up-

Nash1 equilibrium for GSP, then we show that any inefficient Nash equilibria

can be written as an efficient up-Nash equilibrium. In the second step, we prove

the desired revenue bound for all efficient up-Nash equilibria.

Definition 4.2.2 Given a bid profile b, we say it is up-Nash for player i if he can’t

increase his utility by taking some slot above, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j)), ∀j < σ(i).

Analogously, we say that b is down-Nash for player i if he can’t increase his utility by

taking some slot below, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j+1)), ∀j > σ(i).

A bid profile is up-Nash (down-Nash) if it is up-Nash (down-Nash) for all players i.

Clearly a bid profile b is a Nash equilibrium iff it is both up-Nash and down-Nash.

Lemma 4.2.3 If a bid profile b is a Nash equilibrium, then the bid profile b′ where

b′i = bπ(i) is up-Nash.

Proof : We will prove the lemma by modifying bid profile b in a sequence of

steps. Fix some k ≤ n, and suppose that b is a bid profile (with corresponding

allocation π) such that

1Our concepts of up-Nash and down-Nash equilibria are very similar to the concepts of
upwards stable and downwards stable equilibria in Markakis and Telelis [60]
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• players j = 1, . . . , k satisfy the Nash conditions (i.e. both up-Nash and

down-Nash) in b,

• players j = k+1, . . . , n are such that σ(j) = j and they satisfy the up-Nash

conditions in b,

• σ(k) < k.

We then define b′ by swapping the bids of players k and π(k), that is setting

b′i = bi for i 6= k, π(k), b′k = bπ(k), and b′π(k) = bk. We claim that b′ is up-Nash

for players k, . . . , n and Nash for the remaining players. This then implies the

desired result, since we can apply this operation for k = n, followed by k =

n− 1, . . . , 2, resulting in the required bid profile.

Since our transformation does not alter the bids associated with given slots,

we just need to check three things: the up and down-Nash inequalities for

player π(k), and the up-Nash inequality for player k.

Under bid profile b′, player π(k) gets slot σ(k). This player doesn’t want

to change his bid to win any slot j > σ(k) since in the bid profile b player k

with lower value didn’t want to get these slots. We therefore have ασ(k)(vk −

bπ(σ(k)+1)) ≥ αj(vk − bπ(j+1)) and since vπ(k) ≥ vk, we conclude

ασ(k)(vπ(k) − bπ(σ(k)+1)) ≥ αj(vπ(k) − bπ(j+1)). (4.1)

To see that player π(k) would not prefer to take any slot j < σ(k), notice that

π(k) didn’t want to move to a higher slot in b, so αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) −

bπ(j)). This, combined with equation (4.1) for j = k (stating that π(k) prefers slot

σ(k) to k) gives the up-Nash inequality for player π(k).

Next consider player k in bid profile b′, where we gets slot k. We wish to

prove the up-Nash inequality for k. Notice that, in b, π(k) had slot k and didn’t
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want to switch to a higher slot, so we know αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j)).

Now, since vπ(k) ≥ vk, we have αk(vk − bπ(k+1)) ≥ αj(vk − bπ(j)) which is the

desired inequality.

Now to prove Theorem 4.2.1 we use the up-Nash profile b′.

Proof of Theorem 4.2.1 : Given anyNash equilibrium b, consider the bid profile

b′ of Lemma 4.2.3, which is an up-Nash equilibrium in which each player k

occupies slot k. By the up-Nash inequalities, for each k we have

αk(vk − b′k+1) ≥ αk−1(vk − b′k−1).

We can rewrite this as

αk−1b
′
k−1 ≥ (αk−1 − αk)vk + αkb

′
k+1.

Then, since αk ≥ αk+1,

αk−1b
′
k−1 ≥

∑

j∈k+2N

(αj−1 − αj)vj

where k + 2N = {k, k + 2, k + 4, . . .}. Now we can bound the revenue of b:

Rev(b) = Rev(b′) =
∑

k

αkb
′
k+1 ≥

∑

k

αk+1b
′
k+1 ≥

≥
∑

k

∑

j∈k+2+2N

(αj−1 − αj)vj ≥

≥
n
∑

k=2

k − 2

2
(αk−1 − αk)vk =

1

2
B(v).
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To show that the bound in Theorem 4.2.1 is tight, consider the following

example with n slots and n players, parametrized by δ > 0:

α = [1, 1, . . . , 1, 1− δ, 0],

v = [1, 1, . . . , 1, 1, δ],

b = [δ, δ, . . . , δ, δ, 0].

In this caseRev(b) = (n−2)δ+δ(1−δ) andRevV CG(v) = (2δ−δ2)(n−3)+δ(1−δ).

Therefore limn→∞
Rev(b)
B(v) = 2− δ and it tends to 2 as δ → 0.

Notice that those bounds also carry for the case where there is a reserve

price r. We compare the revenueRevr(b)with reserve price r, against a slightly

modified benchmark: Br(v) which is the revenue VCGr extracts from players

2, . . . , n.

Corollary 4.2.4 Let b be a Nash equilibrium of the GSPr game, then

Revr(b) ≥
1

2
Br(v)

Proof : We can assume wlog that vi, bi ≥ r (otherwise those players don’t

participate in any of the auctions). We can define an upper-Nash bid profile b′

as in Lemma 4.2.3. Now, notice that all players in b′ are paying at least r per

click. We can divide the players in two groups: players 1 . . . k are paying more

than r in VCGr and players k + 1 . . . n are paying exactly r. It is trivial that for

the players k + 1 . . . n we extract at least the same revenue under VCGr then

under GSPr. For the rest of the players we need to do the exact same analysis as

in the proof of Theorem 4.2.1.
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4.3 Tradeoff between Revenue and Efficiency

In this section we consider the tradeoff between efficiency and revenue, and ask

if optimal efficiency and optimal revenue can always be achieved in the same

equilibrium. We give a negative answer to this question, showing that for some

AdAuction instances, one can increase revenue by selecting inefficient equilib-

ria. First we recall the equilibrium hierarchy briefly discussed in the introduc-

tion.

Then we characterize the maximum revenue possible for envy free equilib-

rium (that is always efficient). Does this equilibrium class generate more or

less revenue than other classes, such as efficient equilibria or all pure equilib-

ria? This question of comparing the revenue of VCG and envy-free equilibria of

GSPwas addressed by [34], who show that the revenue in any envy-free equilib-

rium is at least that of the VCG outcome (i.e. the VCG outcome is the envy-free

equilibria generating smallest possible revenue). Moreover, as we’ve shown, an

envy-free equilibrium can generate arbitrarily more revenue than the VCG out-

come. Varian [76] shows how to compute the revenue optimal envy free Nash

equilibrium, if we assume that agents will overbid. Allowing overbidding can

result in very high revenue (eg.., the maximum valuation in a single item auc-

tion). Here we determine the maximum revenue that can be obtained if we do

not assume that agents bid at envy-free equilibria, and without requiring that

agents apply the dominated strategy of overbidding.

Finally, we use this characterization to we give a natural sufficient condition

under which there is a revenue-optimal equilibrium that is efficient.
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4.3.1 Equilibrium hierarchy for GSP

Edelman, Ostrovsky and Schwarz [34] and Varian [75] showed that the full in-

formation game always has a Pure Nash equilibrium, and moreover, there is a

pure Nash equilibrium which has same outcome and payments as VCG. The

authors also define a class of equilibria called envy-free or symmetric equilibria.

All envy-free equilibria are Nash equilibria, though not all Nash equilibria are

envy-free. We refer the reader to Section 3.1 for such results. Relevant for the

discussion following is the following result on the revenue of envy-free equilib-

ria:

Lemma 4.3.1 ([34, 75]) That is, if b is an envy-free equilibrium of the game induced by

α and v,Rev(b) ≥ RevV CG(v).

Proof : From Lemma 3.1.2, all envy free are efficient, so if the players are sorted

such that v1 ≥ v2 ≥ . . . ≥ vn we get: Rev(b) =
∑n

i=2 αi−1bi. By envy-freeness,

αi(vi − bi+1) ≥ αi−1(vi − bi) so: αi−1bi ≥ (αi−1 − αi)vi + αibi+1. Telescoping this

inequality, we get: αi−1bi ≥
∑n

j=i(αj−1 − αj)vj . So:

Rev(b) =

n
∑

i=2

αi−1bi ≥
n
∑

i=2

n
∑

j=i

(αj−1 − αj)vj = RevV CG(v)

Also, although all envy-free equilibria are efficient, there are efficient equi-

libria that are not envy-free, as one can see for example in Figure 4.1, as well as

inefficient equilibria. We therefore have the following hierarchy:










VCG

outcome











⊆











envy-free

equilibria











⊆











efficient

Nash eq











⊆











all

Nash










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(1 − α)v

(1 − α)

v

(1 − α)v (1 − α) v

b1

b2

Figure 4.1: Equilibria hierarchy for GSP for α = [1, 1/2], v = [1, 2/3]: the
strong blue dot represents the VCG outcome, the pattern re-
gion the envy-free equilibria, the blue region all the efficient
equilibria and the red region the inefficient equilibria

4.3.2 Envy-free and efficient equilibrium

As shown in the example of Figure 4.1, there are efficient equilibria that generate

arbitrarily less revenue then any envy-free equilibrium. For the other direction,

we show that all revenue-optimal efficient equilibria are envy-free.

Theorem 4.3.2 For any AdAuctions instance such that αi > αi+1∀i, all revenue-

optimal efficient equilibria are envy-free. Moreover, we can write the revenue optimal

efficient equilibrium explicitly as function of α, v recursively as follows:

bn = min

{

vn,
αn−1 − αn

αn−1

vn−1

}

,

bi = min

{

vi,
αi−1 − αi

αi−1
vi−1 +

αi

αi−1
bi+1

}

∀i < n.

Proof : Given an efficient equilibrium b, if it is not envy-free, we show that we

can improve revenue by slightly increasing one of the bids. If the equilibrium is

not envy-free, there is at least one player that envies the player above, i.e.

αi(vi − bi+1) < αi−1(vi − bi).
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As pointed out in [34], if in an efficient equilibrium no player envies the above

slot (i.e. no player iwants to take the above slot i−1 by the price per click player

i is paying) then the equilibrium is envy-free.

Let i be the player with the smallest index that envies slot i−1. Consider the

bid profile b′ such that b′j = bj for j 6= i and b′i = bi + ǫ. We will verify that the

Nash inequalities for player i − 1 still hold when ǫ > 0 is sufficiently small. In

other words, we will show that no Nash inequality for player i − 1 holds with

equality in b.

For slots j > i− 1, notice that

αj(vi − bj+1) ≤ αi(vi − bi+1) < αi−1(vi − bi)

where the first is a standard Nash inequality and the second is the hypothesis

that player i envies the above slot. Now, since vi−1 > vi in an efficient equilib-

rium, we have

αj(vi−1 − bj+1) < αi−1(vi−1 − bi).

For slots j < i− 1, we use the fact that player i is the first envious player. Also,

without loss of generality, we can assume player 1 bids v1. Therefore we need

to verify the Nash inequalities only for j = 2, 3, . . . , k − 1. We have

αi−1(vi − bi) ≥ αj(vi − bj+1) > αj(vi − bj)

where the first inequality comes from the fact that player i− 1 doesn’t envy any

player j above him and the second inequality comes from the fact that bj > bj+1,

since otherwise the player in slot j would envy the player in slot j − 1. This

shows that the revenue optimal equilibrium is envy free.

To see that the bid profile defined in the theorem is optimal, we need to

show the following things about this bid profile b: (i) it is in Nash equilibrium,
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(ii) it is envy free, and (iii) no other efficient Nash equilibrium generates higher

revenue. Begin by noticing that if b is Nash, then player i − 1 doesn’t want to

take slot i, for all i, and therefore αi−1(vi−1 − bi) ≥ αi(vi−1 − bi+1) and this is

satisfied by definition by the bid vector presented. Notice also that this series

of inequalities implies an upper bound on the maximum revenue in an efficient

equilibrium and this bound is achieved exactly by the bid profile defined above.

Furthermore, for all j ≤ i−1we have αi−1(vj−bi) ≥ αi(vj−bi+1) therefore by

composing this expression with different values of i and j, it is straightforward

to show that no player can profit by decreasing his bid. We prove that no player

can profit by overbidding as a simple corollary of envy-freeness. For that, we

need to prove that

αi(vi − bi+1) ≥ αi−1(vi − bi).

If bi = vi than this is trivial. If not, then substitute the expression for bi and notice

it reduces to vi−1 ≥ vi. Now, this proved local envy-freeness, what implies that

no player wants the slot above him by the price he player above him is paying.

This in particular implies that no player wants to increase his bid to take a slot

above.

4.3.3 Cost of efficiency: definition and example

Next we will analyze the relation between revenue and efficiency in GSP auc-

tions.

We define the cost of efficiency for a given profile of click-through-rates as

CoE(α) = max
v

maxb∈Nash(α,v) Rev(b)

maxb∈EffNash(α,v) Rev(b)
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whereNash is the set of all bid profiles in Nash equilibrium and EffNash is the

set of all efficient Nash equilibrium.

First we give examples in which CoE(α) > 1, in which case all revenue-

optimal equilibria occur at inefficient equilibria. Our example will have n = 3

slots and advertisers. The click-through rates are given by α = [1, 2
3
, 1
6
] and the

agent types are v = [1, 7
8
, 6
8
]. In this case, the best possible revenue generated by

an efficient outcome is given by 1
3
+ 7

8
≈ 1.20833 (this can be calculated using the

formula in Theorem 4.3.2). However, for the (inefficient) allocation π = [2, 1, 3],

there is an equilibrium that generates revenue 1.21528.

In Figure 4.2 we calculate this value empirically for each α = [1, α2, α3],

where each αi is an integer multiple of 0.01 in [0, 1]. In all cases we found

that 1 ≤ CoE(α) < 1.1. The color of (α1, α2) in the graph corresponds to

CoE(1, α2, α3), where blue represents 1 and red represents 1.1. By solving a

constrained non-linear optimization problem, one can show that the worst CoE

for 3 slots is 1.09383.

Computing the Cost of Efficiency In the manner of Section 3.4, we will show

how to computeCoE(α) for fixed click-through-rates α = (α1, . . . , αn) using Lin-

ear Programming. The main ingredient will be Theorem 4.3.2 in the previous

section. Given α, v the cost of efficiency is the ratio between the highest rev-

enue Nash-equilibrium, which we call it b1, and the best revenue efficient Nash

equilibrium, which we call b2.

Like we did in Section 3.4, we can fix a permutation π : [n] → [n] represent-

ing the allocation of players to slots under b1, and re-define b1 as the equilibrium

with highest revenue among the equilibria that allocate players to slots accord-
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ing to π. Therefore, what we want to maximize is:

max

∑n
i=2 αi−1b

1
π(i)

∑n
i=2 αi−1b

2
i

where (v, b1) follow the constraints (3.7) and (3.8) with b substituted by b1 and b2

can be obtained from v using Theorem 4.3.2. Even after fixing v, we don’t have

an LP yet, since the conditions in Theorem 4.3.2 involve a minimum operator.

From that theorem, we have:

b2i = min

{

vi,
αi−1 − αi

αi−1
vi−1 +

αi

αi−1
b2i+1

}

, ∀i

where b2n+1 = 0. In order to go around this, we break this problem in 2n linear

programs. For each X = (X1, . . . , Xn) ∈ {0, 1}n add the following constraints:

if Xi = 0 :















vi ≥
αi−1 − αi

αi−1

vi−1 +
αi

αi−1

b2i+1

b2i =
αi−1 − αi

αi−1

vi−1 +
αi

αi−1

b2i+1

if Xi = 1 :















vi ≤
αi−1 − αi

αi−1

vi−1 +
αi

αi−1

b2i+1

b2i = vi

(4.2)

Following the same argument as in Section 3.4, we reduce it to the problem

of computing for each (π,X) the solution of max β where β =
∑n

i=2 αi−1b
1
π(i),

1 =
∑n

i=2 αi−1b
2
i where (v, b1) are subject to constraints (3.7) and (3.8) and (v, b2)

is subject to constraints (4.2)X . Therefore, we can compute CoE(α) by solving

2n · n! linear programs with O(n) variables and O(n2) constraints each. In the

file cost of efficiency.m we provide a code that computes the cost of effi-

ciency for each α.

The utility of such LP formulation is two-fold: one is to produce lower
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bounds on the value of maxα∈In CoE(α). But a perhaps more interesting use

is to be able to plot and get intuition on how the CoE function behaves. This

allowed us to plot the CoE(1, α2, α3) in Figure 4.2 and observe the phenomenon

proved in the next section.

4.3.4 Efficiency Versus Revenue when Click-

Through-Rates are Convex

We now present a condition on α that implies CoE(α) = 1. Our condition is that

the click-through-rates are convex, meaning that αi − αi+1 ≥ αi+1 − αi+2 for all

i. We note that most models for CTRs studied in the literature satisfy convexity,

such as exponential CTRs [53] and Markovian user models [2].

Theorem 4.3.3 If click-through-rates α are convex then there is a revenue-maximizing

Nash equilibrium that is also efficient.

Our proof follows from a local improvement argument: given an instance

with convex click-through-rates and an equilibrium that is not efficient, we

show how to either improve it revenue or its welfare. A key step of the proof is

bounding the maximum revenue possible in equilibrium for a given allocation,

extending Theorem 4.3.2 to inefficient allocations.

Proof : Let b be the revenue maximizing efficient Nash equilibrium. Fix an

allocation π and let b′ be an equilibrium under allocation π. We say that b is sat-

urated for slot i if bi = vi. We start by presenting the proof of the theorem under
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Figure 4.2: Cost of efficiency for α = [1, α2, α3]: in the plot, blue means 1.0
and red means 1.1.

the simplifying assumption that no slot is saturated in the maximum revenue

equilibrium..

Under the no-saturation assumption, Theorem 4.3.2 implies

Rev(b) =
∑

i

αibi+1 =
∑

i

∑

j≥i

(αj − αj+1)vj . (4.3)

Notice that we can view this expression as a dot product of two vectors where

one has elements of the form vi and other has elements in the form αj − αj+1.

Notice also that due to the convexity assumption, this is a dot product of

two sorted vectors. Now, for b′, we will bound revenue as follows. De-

fine m(π, i, j) = max{π(i), π(i + 1), π(i + 2), . . . , π(j)}. Let p be such that the

k = i, i + 1, . . . , i + p are all the indices such that m(π, i, k) = π(i). Now, notice
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that the player in slot i doesn’t want to take slot i+ p+ 1, so

αi(vπ(i) − b′π(i+1)) ≥ αi+p+1(vπ(i) − b′π(i+p+2)).

This implies

αib
′
π(i+1) ≤ αi+p+1b

′
π(i+p+2) + (αi − αi+p+1)vπ(i)

= αi+p+1b
′
π(i+p+2) +

i+p
∑

j=i

(αj − αj+1)vm(π,i,j).

We can now apply recursion to conclude that αib
′
π(i+1) ≤

∑

j≥i(αj−αj+1)vm(π,i,j),

and hence

Rev(b′) =
∑

i

αib
′
π(i+1) ≤

∑

i

∑

j≥i

(αj − αj+1)vm(π,i,j). (4.4)

Notice that equation (4.4) can also be written as a dot product between two

vectors of type vi and αj − αj+1. If we sort the vectors, we see that the (αj −

αj+1)-vector is the same in both (4.3) and (4.4). Moreover, the sorted vector of

vj for equation (4.4) is dominated by that of equation (4.3), in the sense that

it is pointwise smaller. To see this, simply count how many times we have

one of v1, . . . , vi appear in both vectors for each index i: for equation (4.3) they

appear
∑i

j=1 j times, whereas for equation (4.4) they appear at most
∑i

j=1 1 +

max{p |m(π(j, j + p)) ≤ i} ≤∑i
j=1 j times. Since the (αj − αj+1)-vectors are the

same in both equations, the vi vector in the first equation dominates the order

and in the first equation both vectors are sorted in the same order, so it must be

the case that Rev(b) ≥ Rev(b′).

It remains to remove our simplifying assumption about saturation and prove

the general result. Let b be the optimal efficient equilibrium and let S ⊆ [n + 1]

be the set of saturated bids, including n+ 1 (where we consider a ”fake” player

n+ 1 with bn+1 = vn+1 = 0), i.e., i ∈ S iff bi = vi. Let S(i) = min{j ∈ S; j > i}.
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Given an allocation π, we wish to define an upper bound, Revπ, on the rev-

enue of a bid profile that induces allocation π at equilibrium. To this end, we

define

Bπ(j) =















































αS(j)−1vS(j) +
∑S(j)−2

i=σ(j) (αi − αi+1)vm(π,σ(j),i)

if σ(j) ≤ S(j)− 1

αS(j)−1vS(j) − vj(αS(j)−1 − ασ(j))

if σ(j) ≥ S(j)− 1

We then define

Revπ =
∑

j

Bπ(j).

We claim that this is, indeed, an upper bound on revenue. Moreover, this bound

is tight for revenue at efficient equilibria (i.e. when π is the identity id).

Claim 4.3.4 If bid profile b induces allocation π at equilibrium, thenRev(b) ≤ Revπ.

Claim 4.3.5 There exists an efficient equilibrium with revenue Revid.

Using these two claims we want to argue that id is the permutation that

maximizes Revπ and therefore we can show that for all inefficient bid profile b′

we have

Rev(b′) ≤ Revπ ≤ Revid = Rev(b).

To show this, consider some permutation π. Let j = max{k : π(k) 6= k} and

define a permutation π′ such that π′(k) = k for k ≥ j and π′(k) = π(k) for

k < σ(j) and π′(k) = π(k+1) for σ(j) ≤ k < j. Essentially this is picking the last

player that is not allocated to his correct slot and bring him there. Now, if we

prove thatRevπ′ ≥ Revπ, then we are done, since we can repeat this procedure

many times and get to id.
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Claim 4.3.6 Revπ′ ≥ Revπ.

This completes the proof, subject to the proof of our claims, which we do next.

Proof of Claim 4.3.4 : We will show that for all b′ inducing allocation π, we

have ασ(j)b
′
σ(j)+1 ≤ Bπ(j). For σ(j) = S(j) − 1, we use the fact that b′σ(j)+1 =

b′S(j) ≤ vS(j). For σ(j) < S(j) − 1 the result follows in the same way as in the

unsaturated case. For σ(j) > S(j)−1, we use the fact that player j doesn’t want

to take slot j and therefore

ασ(j)(vj − b′σ(j)+1) ≥ αS(j)−1(vj − b′S(j)−1) ≥ αS(j)−1(vj − vS(j))

since

b′S(j) ≤ min{vπ(1), . . . , vπ(S(j)−1)} ≤ vS(j)

and σ(j) > S(j)− 1 so one of the players with value ≤ vS(j) must be among the

first S(j)− 1 slots. Reordering the Nash inequalities above gives us the desired

result.

Proof of Claim 4.3.5 : This claim follows from the formula defining the optimal-

revenue efficient equilibrium in the previous section.

Proof of Claim 4.3.6 : Note first that Bπ(k) = Bπ′(k) for all k > j. Moreover,

for any k with σ(k) < σ(j), we will have σ′(k) = σ(k). In this case, either
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S(k) < σ(k) in which case Bπ′(k) = Bπ(k), or else

Bπ(k) = αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i) ≥

≥ αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)

= Bπ′(k).

It remains to consider k is such that σ(j) ≤ σ(k) ≤ j; that is, those players

k such that σ(k) 6= σ′(k). For each such player, we will consider the difference

between Bπ(k) and Bπ′(k). First note that, for player j, we have

Bπ(j)− Bπ′(j)

=



αS(j)−1vS(j) +

S(j)−2
∑

i=σ(j)

(αi − αi+1)vm(π,σ(j),i)





−



αS(j)−1vS(j) +

S(j)−2
∑

i=σ′(j)

(αi − αi+1)vm(π′,σ′(j),i)





=

j−1
∑

i=σ(j)

(αi − αi+1)vj

For k 6= j, we claim that Bπ′(k)−Bπ(k) ≥ vj(ασ(k)−1 − ασ(k)). We proceed by

two cases. First, if S(k) ≤ σ(k), we have

Bπ′(k)− Bπ(k) =
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ′(k))
)

−
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ(k))
)

= vk(ασ(k)−1 − ασ(k)) ≥ vj(ασ(k)−1 − ασ(k))
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Second, if S(k)− 1 > σ(k), then we have

Bπ′(k)−Bπ(k)

=



αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)





−



αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)





= (αS(k)−2 − αS(k)−1)vm(π′,σ′(k),S(k)−2)

+

S(k)−3
∑

i=σ′(k)

vm(π′,σ′(k),i)[(αi − αi+1)− (αi+1 − αi+2)]

≥ vj(αS(k)−2 − αS(k)−1)

+

S(k)−3
∑

i=σ′(k)

vj[(αi − αi+1)− (αi+1 − αi+2)]

= vj(ασ(k)−1 − ασ(k))

Notice that we strongly use the fact that click-through-rates are convex in the

last inequality to ensure that (αi − αi+1)− (αi+1 − αi+2) ≥ 0.

Therefore, taking the sum over all k with σ(j) ≤ σ(k) ≤ j, we have

∑

k:σ(j)<σ(k)≤j

(Bπ′(k)− Bπ(k)) ≥
j−1
∑

i=σ(j)

vj(αi − αi+1)

= Bπ(j)−Bπ′(j)

so that
∑

k:σ(j)≤σ(k)≤j

(Bπ′(k)− Bπ(k)) ≥ 0.

Combining this with the fact that Bπ′(k) ≥ Bπ(k) for all k with σ(k) < σ(j) or

σ(k) > j, we conclude

Revπ′ =
∑

k

Bπ′(k) ≥
∑

k

Bπ(k) = Revπ
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as desired.
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CHAPTER 5

SPONSORED SEARCHWITH BUDGETS: A DESIGN APPROACH

In the previous chapter, we studied a mechanism that works well in practice

and provided a theoretical analysis of its revenue and welfare in equilibrium,

seeking to explain its prevalence on real life applications.

In this and the next chapter we look at sponsored search auctions from a

design perspective. Our main goal is to identify important real-life features

that are usually ignored in traditional models and propose mechanisms that

take those features explicitly into account. As we discussed in Section 1.4, the

fact that agents are financially constrained in central to real world ad systems.

In fact, the first information Google Ad Words collects from advertisers when

creating a campaign is their budget. We also study the problem of designing

sponsored search mechanisms that take into account that users are bidding on

multiple keywords. In setting with budgets, this becomes very relevant, since

budgets tie different keywords together, after all, money spent on a certain key-

word cannot be spent on another.

Unlike in previous sections where we study Nash and Bayes-Nash equilibria

of auction games, here we adopt the truthful mechanism design methodology,

i.e., we design mechanisms that incentivize agents to report their true value.

We also tackle the most general problem of designing auctions with budgets

for polymatroidal environment. In section 2.8.1 we demonstrated that a very

general model of sponsored search can be captured by polymatroids. This will

allow our design to be applicable to a wide range of problems in sponsored
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search, dealing with multiple keywords and multiple slots simultaneously.

5.1 Desiderata

Consider n players, where player i has a positive value vi per unit of some good

g and a budget of Bi. We will consider polyhedral environments (section 2.8),

where the set of possible allocations is given by a packing polytope P ⊆ Rn

and we will consider budgeted quasi-linear utilities (section 2.2), which mean

that if player i receives xi amount of good g and pays ϕi, her utility ui is equal

to vixi − ϕi if ϕi ≤ Bi and −∞ otherwise. However, since we will require the

mechanism to never charge more than the budgets, we won’t have to deal with

the latter case. Our goal is to design an auctionmechanism that elicits valuations

v from the players and outputs a feasible allocation x(v) ∈ P and a feasible

payment vector ϕ(v) ≤ B that satisfies the following three properties:

• Individual Rationality (a.k.a. voluntary participation): Each player has net

non-negative utility from participating in the auction, i.e., ui ≥ 0.

• Incentive compatibility (a.k.a. truthfulness) : It is a dominant strategy for

each player to participate in the auction and report their true value, i.e.,

vixi(vi, v−i)− ϕi(vi, v−i) ≥ vixi(v
′
i, v−i)− ϕi(v

′
i, v−i). The characterization of

single-parameter truthful mechanisms in [64, 5] states that this is equiva-

lent to xi being a non-decreasing function of vi (for a fixed v−i) and pay-

ments being calculated by ϕi(vi, v−i) = vixi(vi, v−i)−
∫ vi
0

xi(u, v−i)du.

• Pareto-optimality: An allocation x(v) ∈ P and payments ϕ(v) ≤ B is

Pareto-optimal if and only if there is no alternative allocation and pay-

ments where all players’ utilities and the revenue of the auctioneer do not
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decrease, and at least one of them increases. In other words, there is no

alternative (x′, ϕ′) such that vix
′
i − ϕ′

i ≥ vixi(v) − ϕi(v),
∑

i ϕ
′
i ≥

∑

i ϕi(v)

and at least one of those inequalities is strict.

Next we prove a useful lemma about the structure of Pareto-optimal out-

comes.

Lemma 5.1.1 A feasible outcome (x, ϕ), i.e. x ∈ P and ϕ ≤ B, is Pareto-optimal iff

there is no d ∈ Rn in a dominated direction at x (i.e. x + d ∈ P 0 := {x′ ∈ P ; ∃x̂ ∈

P \ x′, x̂ ≥ x′}) such that dtv ≥ 0 and di ≤ 0 for all i that have ϕi = Bi.

Proof : In order to show the⇒ direction, assume there is a dominated direction

d such that dtv ≥ 0 and di ≤ 0 for all i that have ϕi = Bi. Then define x′
i = xi+di

and ϕ′
i = ϕi + vidi and we obtain same utilities and the total payment didn’t

decrease, since
∑

i ϕ
′
i −
∑

i ϕi = dtv ≥ 0. Now, since x+ d is not in the boundary

of the polytope, we can give some more of good g to some players without

charging extra payments and increase their utility. Therefore (x, ϕ) is not Pareto-

optimal.

For the ⇐ direction, suppose (x′, ϕ′) is a Pareto improvement. Define d =

x′ − x. First we claim that dtv > 0. By the definition of Pareto optimality, vixi −

ϕi ≤ vix
′
i−ϕ′

i,
∑

i ϕi ≤
∑

i ϕ
′
i and at least one inequality is strict. Summing them

all, we get that
∑

i vixi <
∑

i vix
′
i, which implies that dtv > 0. Now, consider

two cases:

If x′
i ≤ xi for all i with ϕi = Bi, then di ≤ 0 for all such i. Simply pick

some i for which di > 0 and decrease di slightly. The result will be a dominated
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direction d′ (since x+ d′ ≤ x+ d and x+ d′ 6= x+ d) with d′tv > 0 and d′i ≤ 0 for

all iwith ϕi = Bi.

If x′
i > xi for some i with ϕi = Bi. Then define d′ such that d′i = di if

ϕi < Bi and d′i = min{0, di} if ϕi = Bi. Now, consider x′′ = x + d′ and ϕ′′ = ϕ′.

Clearly d′ is a dominated direction (since x+ d′ ≤ x+ d and x+ d′ 6= x+ d) and

d′i ≤ 0 for ϕi = Bi by definition. Now, we will show that d′tv ≥ 0. Notice that
∑

i p
′′
i =

∑

i ϕ
′
i ≥

∑

i ϕi. Also, except for i with x′
i > xi and pi = Bi we have:

vix
′′
i − ϕ′′

i = vix
′
i − ϕ′

i ≥ vixi − ϕi. For theremaining i, one has: vix
′′
i − ϕ′′

i =

vixi − ϕ′
i ≥ vixi − ϕi. Summing all those inequalities, we get

∑

i vix
′′
i ≥∑i vixi,

implying that d′tv ≥ 0.

Another simple observation is that if (x, ϕ) is a Pareto-optimal outcome in

which no budget is fully exhausted, then x = argmaxx∈P v
tx. For small val-

uations, any Pareto-optimal mechanism that satisfies individually rationality

cannot exhaust budgets, so it must behave like VCG.

5.2 Clinching Auction for Polymatroids

In this section, we describe our main positive result, i.e., an auction with all

the desirable properties for polymatroidal environments. This auction is based

on the clinching auctions framework of Ausubel [9]. Before we study more

complicated constraints, let’s recall the clinching auction [9, 31] for the multi-

unit setting, i.e., P = {x;∑i xi ≤ s0}. We begin by setting the supply s = s0 and

Bi the budget available to each agent. We maintain a price clock p that begins at

zero and gradually ascends. For each price p, the agents are asked how much of

the good they demand at the current price. Their demand will be di =
Bi

p
(how
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much they can afford with their remaining budget) if p ≤ vi, and zero otherwise

(the case where the price exceeds their marginal value). Then agent i is able to

clinch an amount δi = [s−∑j 6=i dj ]
+, which is the minimum amount we can give

to player i while we are still able to meet the aggregate demands of the other

players. Clinching means that player i gets δi amounts of the good, and δip is

subtracted from his budget. The price increases and we repeat the process until

the supply is completely sold.

The heart of the mechanism is the clinching step and generalizing it for more

complicated environments involves various challenges: how does one define

the notion of supply and aggregate demand (it is not a single number anymore,

since there are constraints restraining the possible allocation)? Finally, we need

to make sure the clinching step doesn’t violate feasibility.

Clinching Framework. First, in Algorithm 1, we consider a slightly mod-

ified version of the clinching framework: we maintain a price vector p ∈ Rn
+

and increase the prices one player at a time. The vector ρ ∈ Rn
+ contains the

promised allocations in each step and its final value is the final allocation of the

mechanism. The payment of each agent is the total amount that was deducted

from their budget during the execution 1.

For each price, we calculate the demand di of each player, which is the

amount of the good they would like to get for price p. Then we invoke a pro-

cedure called clinch which decides the amount to grant to each player at that

price. We update the promises, remaining budget and adjust demands2. Then

1Note that the details of the main procedure clinch is not described in this algorithm.
2Clearly updating demands is not necessary at this point, but we do in order to make the

analysis cleaner.
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Algorithm 1: Polyhedral Clinching Auction

Input: P, vi, Bi

pi = 0, ρi = 0, î = 1

do

di = Bi/pi if pi < vi and di = 0 otherwise,

δ = clinch(P, ρ, d),

ρi = ρi + δi, Bi = Bi − piδi,

di = Bi/pi if pi < vi and di = 0 otherwise,

pî = pî + ǫ , î = î+ 1 mod n

while d 6= 0

we increase the price.

In order to define clinching, we need to define analogues of the remnant

supply and to demands for the case where the the environment is a generic

polytope. Instead of being a single number as in the multi-unit auctions case,

the remnant supply and aggregate demands will be polytopes:

Definition 5.2.1 (aggregate demands) Given P , a vector of promised allocation ρ ∈

P , the remnant supply is described by the polytope Pρ = {x ≥ 0; ρ+x ∈ P}. If d ∈ Rn
+

is the demand vector, the aggregate demand is defined by Pρ,d = {x ≥ 0; ρ+x ∈ P, x ≤

d}.

In the multi-unit auctions case, the amount player i clinched was the max-

imum amount we could give him while still being able to meet the demands

of the other players. We generalize this notion to polyhedral environments (the

concepts are depicted in Figure 5.1):
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ρ

ρ + d

Pρ,d

P 1

ρ,d(0) P 1

ρ,d(δ1)

P 1

ρ,d(δ1 + ǫ)

ρ

ρ + d

Figure 5.1: Illustration of polyhedral clinching: the first two figures depict
the polytopes defined in Definitions 5.2.1 and 5.2.2. The third
depicts the mechanism running on polytope P : during the ex-
ecution, the vector ρ walks inside the polytope (blue line) and
the vector ρ + d walks outside it (red line), until they meet at
the boundary. The point they meet corresponds to the final al-
location.

Definition 5.2.2 (polyhedral clinching) The demand set of players [n]\ i if one al-

locates xi to player i is represented by the polytope P
i
ρ,d(xi) = {x−i ∈ R

[n]\i
+ ; (xi, x−i) ∈

Pρ,d}. Since P is a packing polytope, clearly P i
ρ,d(xi) ⊇ P i

ρ,d(x
′
i) if xi ≤ x′

i. The amount

player i is able to clinch is the maximum amount we can give him without making any

allocation for the other players infeasible. More formally, δi = sup{xi ≥ 0;P i
ρ,d(xi) =

P i
ρ,d(0)}.

We need to ensure that the clinching step is well-defined, i.e., that after

clinching is performed, the vector of promised allocations is still feasible. This

is done by the following lemma:

Lemma 5.2.3 For each step of the auction above, if ρ ∈ P , then ρ+ δ ∈ P .

Proof : Let χi be the i-th coordinate vector. Note that δ1χ
1 ∈ Pρ,d by definition of

δ. Now, notice that δ1χ
1 ∈ P 2

ρ,d(0) = P 2
ρ,d(δ2), so: δ

1χ1+ δ2χ
2 ∈ Pρ,d. By induction,
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we can show that
∑j

i=1 δiχ
i ∈ Pρ,d. The induction is easy:

∑j
i=1 δiχ

i ∈ P j+1
ρ,d (0) =

P j+1
ρ,d (δj+1), so

∑j+1
i=1 δiχ

i ∈ P j+1
ρ,d .

This auction is clearly truthful, since each player i reports only vi, and she

can stop her participation earlier (which she doesn’t want, since she will po-

tentially miss items she are interested in) or later (which will potentially give

her items for a price higher than her valuation). It is also individually rational,

since players only get items for prices below their valuation and respect budgets

by the definition. Notice that those facts are true regardless of the trajectory of

the price vector: any process that increases prices (in a potentially non-uniform

way) has this property.

Lemma 5.2.4 The auction in Algorithm 1 along with the clinching step described in

Definition 5.2.2 is truthful, individually-rational and budget-feasible.

Clinching for polymatroids. Notice that we haven’t used anything from

polymatroids yet, so Lemma 5.2.4 holds for any polytope P . However, two

things are left to be shown: (i) that amount clinched can be computed efficiently

and (ii) that the outcome is Pareto optimal. To show both of these properties,

we use the fact that P is a polymatroid.

Lemma 5.2.5 If the environment is a polymatroid P defined by a submodular function

f , then the amount player i clinches in Algorithm 1 is given by:

δi = (maxx∈Pρ,d
1

tx)− (maxx∈Pρ,d
1

t
−ix−i).

Moreover, this can be calculated efficiently using submodular minimization.
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The main ingredients of the proof are the following two facts about polyma-

troids:

Fact 5.2.6 (Schrijver [74], sections 44.1 and 44.4) If P is a polymatroid defined by

the submodular function f , then Pρ,d is also a polymatroid defined by the following

submodular function:

f̂(S) = min
T⊆S

{f(T )− ρ(T ) + d(S \ T )}.

Notice that f̂(·) might not be monotone. However,

f̄(S) = min
S′⊇S

f̂(S ′)

is a monotone submodular function that defines the same polymatroid.

Fact 5.2.7 Given two monotone submodular functions f, f̃ , then the polymatroids P, P̃

defined by them are equal iff the functions are equal. The (⇐) direction is trivial. For

the other direction, notice that if f(S) < f̃(S) say for S = {1, . . . , i}, notice that the

point x such that xj = f̃({1..j})− f̃({1..j − 1}) for j ≤ i and zero otherwise is such

that x ∈ P̃ \ P .

Proof of Lemma 5.2.5 : Using the fact 5.2.6, we know that P i
ρ,d(xi) is also a

polymatroid defined over [n] \ i by the function f̃(S) = min{f̄(S), f̄(S ∪ i)−xi}.

Now, we use Fact 5.2.7 to see that P i
ρ,d(xi) = P i

ρ,d(0) iff f̄(S) ≤ f̄(S ∪ i)−xi, ∀S ⊆

[n] \ i. So, δi = minS⊆[n]\i f̄(S ∪ i) − f̄(S). Since f̄ is submodular, the smallest

marginal can only be

f̄([n])− f̄([n] \ i) = max{0, f̂([n])− f̂([n] \ i)}

which is exactly the expression in the statement of the lemma. Now, one can

easily see that evaluating f̂ is a submodular minimization problem.
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Now we prove that the outcomes are Pareto-optimal in two steps. The first

step is to characterize Pareto-optimal allocations for polymatroids. This charac-

terization is stronger than that of Lemma 5.1.1, since it explores the structure of

polymatroids. Afterwards, we show that the outcomes of the chinching auction

defined in Algorithm 1 satisfy the two conditions in the characterization lemma.

In the following, for a vector x ∈ R
n and S ⊆ [n] we denote x(S) =

∑

i∈S xi.

Lemma 5.2.8 For a polymatroidal environment P defined by a submodular function

f , an allocation (x, ϕ) is Pareto optimal iff:

1. All items are sold, i.e., x([n]) = f([n]), and

2. Given a player i with ϕi < Bi and player j with vj < vi, then there exists a set S

such that x(S) = f(S), i ∈ S and j /∈ S

The following elementary facts about submodular functions will be useful

in the proof of the Lemma 5.2.8:

Fact 5.2.9 Given a vector x ∈ P , if two sets S, T are tight (i.e. x(S) = f(S) and

x(T ) = f(T )), then S ∩ T and S ∪ T are also tight. The proof is quite elementary:

x(S∪T ) = x(S)+x(T )−x(S ∩T ) ≥ f(S)+f(T )−f(S∩T ) ≥ f(S∪T ). So, all the

inequalities must be tight and therefore x(S∪T ) = f(S∪T ) and x(S∩T ) = f(S∩T ).

Fact 5.2.10 If x([n]) < f([n]) then there is one component xi that we can increase by

δ > 0 such that x is still in P . It follows from the previous fact: if all players i were

contained in a tight set, one could take the union of those and [n] would be tight. Then

there is some element i which is in no tight set.
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Proof of Lemma 5.2.8 : The (⇒) direction is easy. If x([n]) < f([n]) then we can

increase some xi (Fact 5.2.10) and still get point P generating a Pareto improve-

ment. Also, if there is ϕi < Bi and vj < vi and no tight set separating them, then

we can consider another outcome where we increase xi by some δ > 0, decrease

xj by some δ < 0 and still get a feasible point improving xtv. Now, this would

not be Pareto optimal by Lemma 5.1.1.

For the (⇐) direction, let (x, ϕ) be an outcome satisfying properties 1 and

2 and suppose (x′, ϕ′) is a Pareto-improvement. This means that vix
′
i − ϕ′

i ≥

vixi − ϕi and
∑

i ϕ
′
i ≥

∑

i ϕi.

Let {i1, . . . , ik} = {n} ∪ {i;ϕi < Bi}, sorted in non-increasing order of vi.

Using property 2 (notice it holds for player n trivially) together with fact 5.2.9,

we define the following family of tight sets S1 ⊆ S2 ⊆ . . . ⊆ Sk = [n], tight in the

sense that x(Si) = f(Si). For all vt < vi1 there is a tight set S1t that has i1 but not

t. Let S1 be the intersection of such sets. Now, given S1 ⊆ . . . ⊆ Sj−1, we define

Sj in the following way: If ij ∈ Sj−1, take Sj = Sj−1 (notice can only happen if

vij = vij−1
). If not, for each vt < vij there is a tight set Sjt that has ij but not t.

Now, define Sj as the union of Sj−1 and the intersection of the Sjt sets.

By eliminating duplicates and its corresponding elements from {i1 . . . ik},

we get a family S1 ⊂ . . . ⊂ Sk. Define Tj = Sj \ Sj−1 and it is clear the family

obtained has the following properties:

• all t ∈ Sj have vt ≥ vij

• ij ∈ Tj

• for all i ∈ Tj either vi = vij or ϕi = Bi.
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Let T ′
j = {i ∈ Tj ; vi 6= vij} and T ′′

j = {i ∈ Tj ; vi = vij}. Since the players in T ′
j

have exhausted their budget, ϕi ≥ ϕ′
i. Using that and Pareto-optimality, we get:

∑

i∈T ′

j

ϕi − ϕ′
i ≥

≥
∑

i∈T ′

j ,xi≥x′

i

ϕi − ϕ′
i ≥

∑

i∈T ′

j ,xi≥x′

i

vi(xi − x′
i)

∗
≥

≥
∑

i∈T ′

j ,xi≥x′

i

vij (xi − x′
i)

∗∗
≥
∑

i∈T ′

j

vij (xi − x′
i)

(5.1)

Now, we can add the inequality ϕi − ϕ′
i ≥ vij (xi − x′

i) for i ∈ T ′′
j and obtain:

∑

i∈Tj

ϕi − ϕ′
i ≥

∑

i∈Tj

vij(xi − x′
i) (5.2)

Summing those for all j and get:

∑

i

ϕi − ϕ′
i ≥

∑

j

∑

i∈Tj

vij (xi − x′
i) =

∑

j

(vij − vij+1
)
∑

i∈Sj

(xi − x′
i) ≥ 0

since x(Sj) = f(Sj) ≥ x′(Sj). Therefore
∑

i ϕi ≥ ∑

i ϕ
′
i and therefore equal.

This means in particular all of the inequalities in (5.1) and (5.2) must be tight.

Therefore for all i ∈ T ′
j we need to have xi = x′

i, since if xi > x′
i then inequality ∗

in (5.1) would be strict. If xi < x′
i, then inequality ∗∗would be strict. We use this

fact to show that
∑

i∈Sj
vi(xi − x′

i) ≥ 0 by induction on j. If we show that, we

can take j = k and then we are done, since this will imply that
∑

i vixi ≥
∑

i vix
′
i

and therefore (x′, ϕ′) cannot be a Pareto-improvement.

For j = 1, this is trivial, since we can write:

∑

i∈S1,vi 6=vi1

vi(xi − x′
i) ≥

∑

i∈S1,vi 6=vi1

vi1(xi − x′
i)

since both terms are zero, and then sum vi(xi−x′
i) for the rest of the elements in
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S1 and use the fact that S1 is tight. For other j, we use that:

∑

i∈Sj

vi(xi − x′
i) ≥

≥ vij−1

∑

i∈Sj−1

(xi − x′
i) +

∑

i∈T ′

j

vi(xi − x′
i) +

∑

i∈T ′′

j

vij (xi − x′
i) ≥

≥ vij
∑

i∈Sj

(xi − x′
i) = vij (x(Sj)− x′(Sj)) ≥ 0,

by the fact that Sj is tight.

Now, we argue that, for sufficiently small ǫ, the outcome satisfied the two

properties in Lemma 5.2.8 and hence is Pareto-optimal. We prove this fact using

the following sequence of lemmas:

Lemma 5.2.11 After the clinching step is executed, and before updating prices,

f̂([n]) ≤ f̂([n] \ j), ∀j ∈ [n].

Proof : In the clinching step, given an initial f̂0, we define δi = max{0, f̂0([n])−

f̂0([n] \ i)}. After we update ρ, B, d, f̂ is updated to f̂1(S) = f̂0(S)− δ(S). Now,

it is easy to check that:

f̂1([n]) = f̂0([n])−
∑

i

δi = f̂0([n])− δj −
∑

i 6=j

δi ≤ f̂0([n] \ j)−
∑

i 6=j

δi = f̂1([n] \ j)

Lemma 5.2.12 The outcome (x, ϕ) of the clinching auction is such that x([n]) =

f([n]).

Proof : We show the following invariant: if we define f̂ as in Fact 5.2.6, updat-

ing it each round as ρ, d changes, we claim that the value of 1tρ+ f̂([n]) remains

constant.
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To do so, we consider the events that can cause it to drop:

1. clinching: just after clinching occurs (i.e. ρi increases by δi, budgets de-

crease by pδi, demands are adjusted, but before the price increases), the

amount 1tρ + f̂([n]) remains the same since ρt1 increases by δt1 and for

all S, f̂(S) decreases by δ(S), because to each i, ρ increases by δi and di

decreases by δi.

2. price pi increases and di decreases by θ, 0 ≤ θ ≤ di. If 1
tρ+ f̂ ([n]) decreased

then there was some T, i /∈ T such that:

f̂([n] \ i) + di − θ ≤ f(T )− ρ(T ) + d([n] \ T )− θ < f̂([n])

Using Lemma 5.2.11, we know that f̂([n]) ≤ f̂([n] \ i), so di < θ which is

not true.

The proofs of the previous two lemmas intuitively establishes the maximal-

ity of the clinching procedure. Lemma 5.2.11 can be interpreted as saying that if

we apply the clinching procedure twice, without updating prices, then the sec-

ond time will have no effect. The proof of Lemma 5.2.12 identifies an invariant

that is maintained during the execution of the mechanism.

Lemma 5.2.13 If ǫ < minvi 6=vj |vi − vj |, then property 2 of Lemma 5.2.8 is satisfied.

Proof : Suppose not and for the final outcome there are vj < vi, ϕi < Bi and all

sets S such that i ∈ S, j /∈ S are not tight. First, clearly xj 6= 0, otherwise [n] \ j
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would be tight by Lemma 5.2.12. Then consider x̃where x̃i = xi + θ, x̃j = xj − θ

and x̃k = xk for all k 6= i, j. It is feasible for some small θ.

Now, consider the promised allocation ρ and demands d just before the last

time player j clinched an amount δj > 0. If necessary decrease θ so that it

becomes smaller than this last amount clinched, i.e., θ < δj . At this point ρ ≤

x ≤ ρ+ d. By the definition of clinching: P j
ρ,d(δj) = P j

ρ,d(θ) = P j
ρ,d(0).

At this point, ρ ≤ x and ρj + θ < ρj + δj = xj . Therefore x̃ ≥ ρ. Also,

we have that x − ρ ≤ d and xi − ρi < di, since agent i hasn’t dropped his

demand to zero yet and his demand never increases and won’t be met while

vi < pi. Here we are strongly using that ǫ < minvi 6=vj |vi − vj | to ensure that for

the last time player j clinches, player i demand is not zero yet. This implies that

x̃ − ρ ∈ Pρ,d so (x̃ − ρ)−j ∈ P j
ρ,d(0). Now, the fact that P j

ρ,d(0) = P j
ρ,d(δi) implies

that x̂ = (xj , x̃−j) ∈ P . But x̂([n]) = x([n]) + θ = f([n]) + θ > f([n]), which is an

absurd.

We can summarize the results as:

Theorem 5.2.14 For a polymatroidal environment, the auction in Algorithm 1 along

with the clinching step described in Definition 5.2.2 has all the desirable properties.

5.2.1 Extensions of the clinching framework

The clinching framework described in Algorithm 1 and Definition 5.2.2 is quite

flexible: one can change the way clinching is done or the way prices ascend
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and obtain an auction that is still truthful, individually rational, and respects

budgets. Pareto-optimality, however, is a delicate property to achieve.

Scaled polymatroids: If P ⊆ Rn
+ is a polymatroid, γ ∈ Rn

+, then we call

Pγ = {x; (xi

γi
)i ∈ P} a scaled polymatroid. If the environment is Pγ , it is easy

to see that a truthful, individually-rational, Pareto-optimal and budget-feasible

auction is obtained by running the polymatroid clinching auction on P with in-

puts γivi instead of vi. It is simple to see that this is equivalent to a standard

clinching auction with input values vi but price clocks advancing on a different

speed for each player. Scaled polymatroids are important since they correspond

to the setting of AdWords with Quality Factors discussed in section 2.8.2).

Beyond scaled polymatroids: one could change the way clinching is done

and one could change the price trajectories, maybe in a more sophisticated way

then the one we did for the scaled polymatroids. If the trajectory is such that

it only depends on P and budgets (not on values) and pi never decreases, the

auction retains truthfulness and budget feasibility. Here we argue that none of

such changes would generate a Pareto-optimal auction when P is not a scaled

polymatroid. Assume n = 2 for simplicity and imagine that there is trajectory

for the price vector p and a clinching procedure. Also assumes valuations are

much smaller than budgets in such a way that the mechanism cannott exhaust

budgets and therefore the auction must allocate like VCG. Any suchmechanism

must decide on the whole allocation the first time pi = vi for some component,

having only the information that vj ≥ pj for the other component, since at this

point he needs to allocate to the second player. So, the environment must be

such that there is a price trajectory p(t), where the optimal allocation is constant
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for all points (p1, v2) for all v2 > p2. And also, it should be constant for all (v1, p2)

for all v1 > p1. Notice that scaled polymatroids are exactly those environments.

5.2.2 Faster clinching subroutines

In Lemma 5.2.5 we showed that for any generic polymatroidal environment P

we can perform the clinching step in polynomial time if we have oracle access to

the submodular function defining the polymatroid. In order to do so, we solve

a submodular minimization problem. For most practical applications, however,

one can design much simpler and faster algorithms for clinching. Clinching

involves solving the following problem: given an environment P , ρ ∈ P and

d ∈ Rn
+ we want to compute:

max{1tx; x+ ρ ∈ P, 0 ≤ x ≤ d} (5.3)

We illustrate how to solve this problem efficiently for the single-keyword

AdWords polytope: given α1 ≥ α2 ≥ . . . ≥ αn, consider the environment:

P = {x ∈ R
n
+; x(S) ≤

∑|S|
j=1 αj, ∀S ⊆ [n]}

Lemma 5.2.15 For the single-keyword AdWords polytope, the optimization problem

defined in equation (5.3) can be solved using the following greedy algorithm: we can

assume wlog that the components are sorted such that ρ1+d1 ≥ ρ2+d2 ≥ . . . ≥ ρn+dn.

Now, define inductively

zi = min{ρi + di,
∑i

j=1 αj −
∑i−1

j=1 zj}.

Then
∑

i zi − ρi is the solution to the problem.
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Proof : If we drop the restriction that x ≥ 0 in (5.3), then it is easy to see that

x = z − ρ is an optimal solution to this problem using, for example, a local

exchange argument. Now, we show that we can fix this problem, by modifying

z such that z ≥ ρ.

In order to fix that, consider the smaller i such that zi < ρi. By the definition

of zi, it must be the case that zi =
∑i

j=1 αj −
∑i−1

j=1 zj , so
∑i

j=1 zj =
∑i

j=1 αj .

Then there must be some k < i such that zk > ρk, otherwise we would have
∑i

j=1 ρj >
∑i

j=1 αj contradicting the fact that ρ ∈ P . Notice we can increase

zi by some small δ and decrease zk by a small δ. And obtain another vector z

which is also such that z ∈ P, z ≤ ρ+ d and has the same 1tz value (the fact that

z ∈ P after this transformation is due to the nature of the constraints). We can

repeat this process until we get z ≥ ρ.

5.3 Limitations of auctions for budget-constrained agents

Previously, we argued why simple modifications to the clinching auction would

not work for polyhedral environments beyond (scaled) polymatroids. Here, we

explore the possibility of designing an auction of a different format achieving

those properties and show that this is not possible even for two players. We

do so through a general characterization of Pareto-optimal auctions with desir-

able properties. Before stating the characterization, we study the case with one

budget-constrained player and prove some lemmas that are useful in proving

the general characterization result later.
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5.3.1 One budget-constrained player

For ease of exposition, we first focus on 2 players and assume that the feasible

set of allocations P has a smooth and strictly-concave boundary, in the sense

that for each v ∈ R2
+ there is a single point x∗(v) ∈ P maximizing vtx such that

x∗(v) is a C∞-function. In fact, one can approximate any polytope by such a

set using the technique of Dolev et al [33]. Using compactness arguments, it is

possible to get an auction for the original environment by taking the limit of the

auctions obtained for its C∞-approximations.

Assume that player 1 is not budget constrained and player 2 has budget B2

and let (x∗, ϕ∗) be the VCG mechanism for this setting. Now, we can define the

function:

ξ(v1) = min{v2;ϕ∗
2(v1, v2) ≥ B2}

Theorem 5.3.1 The allocation rule

x(v1, v2) = x∗(v1,min{v2, ξ(v1)})

is monotone. Moreover, when coupled with the appropriate payment rule, it generates a

Pareto-optimal and budget feasible mechanism

Proof : The main part of the proof is to show that the allocation is monotone.

If we show that, it is clearly budget feasible for player 2, since we use the VCG-

payment rule until the point the budget of player 2 gets exhausted and from

that point on, the allocation is constant. When the budgets of the players are

not exhausted, the allocation is efficient (since it mimics VCG) and therefore

is Pareto-optimal. The allocation when the budget of player 2 is exhausted is
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equivalent to the VCG allocation of a pair (v1, v
′
2) with v′2 ≤ v2, so player 1

is getting x∗
1(v1, v

′
2) ≥ x∗

1(v1, v2) by monotonicity of VCG. This implies Pareto-

optimality as a consequence of Lemma 5.1.1.

Monotonicity: The allocation rule is clearly monotone for player 2. We need

to show it is monotone for player 1, i.e. that the function t 7→ x1(v1 + t, v2) is

monotone non-decreasing. It is clearly so for intervals where ξ(v1 + t) ≥ v2, so

let’s assume that for t ∈ (−ǫ,+ǫ) we have ξ(v1 + t) < v2. Our goal is to show

that: d
dt
x∗
1(v1 + t, ξ(v1 + t)) ≥ 0. Since the VCG-allocation lies in the boundary

of P , this is the same as showing that d
dt
x∗
2(v1 + t, ξ(v1 + t)) ≤ 0. The crucial

observation is that the VCG-payment for player 2 on the curve (v1 + t, ξ(v1 + t))

is constant, i.e.:

B2 ≡ ϕ∗
2(v1 + t, ξ(v1 + t)) = ξ(v1 + t)x∗

2(v1 + t, ξ(v1 + t))−
∫ ξ(v1+t)

0

x∗
2(v1 + t, u)du

Now, we can simply derivate it with respect to t. We use the notation ∂if(·)

for the derivative of f with respect to the i-th variable. We also define x∗
2(t) =

x∗
2(v1 + t, ξ(v1 + t)). Now,

0 = ξ′(v1 + t)x∗
2(t) + ξ(v1 + t)

d

dt
x∗
2(t)− ξ′(v1 + t)x∗

2(t)−
∫ ξ(v1+t)

0

∂1x
∗
2(v1 + t, u)du

ξ(v1 + t)
d

dt
x∗
2(t) =

∫ ξ(v1+t)

0

∂1x
∗
2(v1 + t, u)du ≤ 0

since x∗
2(v1, v2) decreases with v1 by the definition of the VCG allocation.

A variant of the proof can be used to show the following result for 2 budget

constrained players. This is useful for our general characterization.

Corollary 5.3.2 If the functions ξ1(v2), ξ2(v1) are such that the regions {v; v2 ≥

ξ2(v1)} and {v; v1 ≥ ξ1(v2)} are disjoint, then one can define

x(v1, v2) = x∗(min{v1, ξ1(v2)},min{v2, ξ2(v1)})
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ϕi(v) = vixi(v)−
∫ vi

0

xi(u, v−i)du.

If ϕ2(v1, ξ2(v1)) ≡ B2 and ϕ1(ξ1(v2), v2) ≡ B1, then (x, ϕ) is a mechanism with the

desirable properties.

The above corollary has a strong fixed-point flavour and it is tempting to

believe one could get the existence of such a mechanism from this theorem.

This is however not true, as shown in the next section. However, this result

remains useful as a tool for searching for such mechanisms whenever they exist.

For example, one can extend the above theorem to prove the existence of the

mechanisms for polyhedral environments when B1 is much larger then B2.

5.3.2 Characterization and impossibility

Now we discuss our main negative result: which states an impossibility of ex-

tending the auction for polymatroids to general polyhedral environments.

Theorem 5.3.3 (Impossibility) There is no general auction for every polyhedral en-

vironment and every pair of budgets that satisfies the desirable properties.

We prove it in two steps: first we prove a sequence of lemmas characteriz-

ing 2-player auctions for polyhedral environments satisfying all the desirable

properties. Then we fix a specific polyhedral environment and argue that no

mechanism can possibly satisfy this characterization.

First, we begin by understanding the format of an auction with the desirable

properties where the environment is a packing polytope P ⊆ R2
+. We start by
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defining a family of VCG auctions.

VCG-family: We say that a mechanism is in the VCG-family if its allocation

x(v) ∈ P is such that

x(v) ∈ X∗(v) := argmaxx∈P v
tx.

Notice that there might be more than one such mechanism: if v is normal to

an edge of the polytope, then the entire edge is in the argmax. Nevertheless,

x(v1+, v2) = limv′1↓v1 x(v
′
1, v2) and x(v1, v2+) = limv′2↓v2 x(v1, v

′
2) are common for

the entire family, as we see in the following lemma. A consequence of this fact

is that the payment function might not be unique, but ϕ(v1+, v2) and ϕ(v1, v2+)

are unique.

Lemma 5.3.4 Given a convex set P ⊆ R2
+ and two allocation rules x(v), x̃(v) ∈

X∗(v) := argmaxx∈Pv
tx, then x(v1+, v2) = x̃(v1+, v2), where x(v1+, v2) =

limv′1↓v1 x(v
′
1, v2).

Proof : Suppose that x(v1+, v2) 6= x̃(v1+, v2), then say that x1(v1+, v2) >

x̃1(v1+, v2). Since both are in the boundary of the polytope, it means that for

all (v′1, v2) with v′1 > v1, x̃1(v
′
1, v2) ≥ x1(v1+, v2), since the points to the right

of x(v1+, v2) are clearly better then the ones to the left of it. So x̃1(v
′
1, v2) can’t

converge to x̃1(v1+, v2) < x1(v1, x2).

To illustrate this fact, consider the simple case of P = {x ∈ R2
+; x1 + x2 ≤ 1}.

Then the VCG mechanism is well-defined for x1 6= x2, which is, simply to al-

locate to the player with the highest value the entire amount. But notice that
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completing this mechanism with any allocation in the points (v, v) generates a

truthful mechanism. The payments of different mechanisms of the VCG family

differ on (v, v), for example ϕi(v, v) = vxi(v), but notice that the payments ev-

erywhere else are well-defined.

Pareto-optimal mechanisms: Now we turn our attention back to Pareto-

optimal mechanisms for two budget-constrained players. Let (x, ϕ) be such

mechanism. As a direct consequence of the characterization of Pareto optimal

outcomes (Lemma 5.1.1), we know the following:

• if ϕi(v) < Bi then xi(v) ≥ min{xi; x ∈ X∗(v)}

• if ϕ1(v) < B1, ϕ2(v) < B2 then x(v) ∈ X∗(v)

And a simple consequence of truthfulness:

• if ϕi(v) = Bi then for all v′i ≥ vi, x(v
′
i, v−i) = x(vi, v−i).

Now, we are ready to start proving the characterization theorem. We will

characterize the mechanism in terms of the regions in the space of valuations

where the budgets get exhausted. For formally, we are interested in under-

standing the sets:

Ei = {v ∈ R
2
+;ϕi(v) = Bi}

Lemma 5.3.5 If mechanism (x, ϕ) has the desirable properties, then eitherE1∩E2 = ∅

or there exists some a ∈ R2
+ such that {v; v > a} ⊆ E1 ∩ E2 ⊆ {v; v ≥ a}.
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Proof : Assume that E1∩E2 is not empty. Then we will prove the lemma in two

parts. For the first part we will prove two statements: (i) if that if v0 ∈ E1 ∩ E2

and v ≥ v0 then x(v) = x(v0) and (ii) if v, v′ ∈ E1 ∩ E2 and v∗i = min{vi, v′i}

then x(v∗) = x(v) = x(v′). Then for the second part, we show that this whole

region that has constant allocation has budget exhausted for the two players.

See figure 5.2 for an illustration of the proof.

For (i), let v1 = (v1, v
0
2) and v2 = (v01, v2) and notice that x(v0) = x(v1) = x(v2),

since budgets are exhausted so the allocation can’t increase. By monotonicity,

x2(v) ≥ x2(v
1) = x2(v

0) and x1(v) ≥ x1(v
2) = x1(v

0). Since all allocations lie in

the boundary of the polytope, we must have x(v) = x(v0).

The proof of (ii) is very similar, define v0i = max{vi, v′i}. Then by (i), x(v) =

x(v0) = x(v′) now, by the exact same argument as above we show that x(v∗) =

x(v0).

Now, if ai = inf{vi; v ∈ E1 ∩ E2}, let us show that for v > a, v ∈ E1 ∩ E2.

Let us show that v ∈ E2 and then E1 is analogous. By definition, there is some

v′ ∈ E1 ∩ E2 with v′1 < v1. Then (v′1, v2) ∈ E2 since the allocation is constant,

for v > a, the budget of 2 is exhausted in (v′1, v2) iff it is exhausted in (v′1, v
′
2).

Now, note that by monotonicity x1(v
′
1, u) ≤ x1(v1, u) and since allocation is in

the boundary of the polytope x2(v
′
1, u) ≥ x2(v1, u). By the payment formula,

p2(v) = v2x2(v)−
∫ v2
0

x2(v1, u)du and by the fact that x2(v) = x2(v
′
1, v2), we have

that B2 ≥ p2(v) ≥ p2(v
′
1, v2) = B2, so v ∈ E2.

The next lemma further describes the regions E1 and E2:

Lemma 5.3.6 If P is a packing polytope, there is a finite set of vectors {u1, u2, . . . , uk}

such that for v 6= tui for some t ≥ 0, the VCG family is uniquely defined. Moreover,
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Figure 5.2: Illustration of the proof of Lemma 5.3.5
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Figure 5.3: Illustration of the proof of Lemma 5.3.6

if (x, ϕ) is a mechanism with the desirable properties and E1 ∩ E2 ⊆ {v; v ≥ a} then

if ξi(v−i) = inf{vi; pi(vi, v−i) = Bi} and v−i < a−i, then (ξi(v−i), v−i) = tui for some

t, i.

Proof : The set of vectors {u1, u2, . . . , uk} is simply the set of normals of the

edges of the polytope as depicted in the first part of Figure 5.3. If v is not an edge

in the polytope, then the point in P maximizing vtx is a vertex and therefore

uniquely defined. If we draw the lines ui · t for t > 0 we divide the space of

all possible valuations in regions (see second part of the figure): the regions

correspond to the vertices and the lines to edges of the polytope.
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Now, given a certain mechanism (x, ϕ), suppose that v1 < a1 the vector

(v1, ξ2(v1)) is not normal to any edge of P . Then clearly x∗(v1, ξ2(v1)) is well-

defined and moreover, for some δ > 0 and v′2 ∈ [ξ2(v1)−δ, ξ2(v1)+ δ], x∗(v1, v
′
2) is

well-defined and constant in the v′2-range. Also (v1, v
′
2) /∈ E1 ∩ E2, since v1 < a1.

For such v′2 > ξ2(v1), we know that (v1, v
′
2) ∈ E2, thus it is not in E1 and there-

fore x2(v1, v
′
2) = x2(v1, ξ2(v1)) ≤ x∗

2(v1, ξ2(v1)). For v′2 < ξ2(v1), (v1, v
′
2) /∈ E2 so

x2(v1, v
′
2) ≥ x∗

2(v1, v
′
2). Using that x2(v1, v

′
2) is constant in v′2 in this range and

taking v′2 ↑ ξ2(v1), we get: x2(v1, v
′
2) ≥ x∗

2(v1, ξ2(v1)).

Now, by monotonicity, we have x2(v1, v
′
2) = x∗

2(v1, ξ2(v1)) for all v′2 in the

interval (ξ2(v1)− δ, ξ2(v1) + δ). Therefore the budget of player 2 could not have

been exhausted on ξ2(v1).

The third part of Figure 5.3 illustrates how the region E2 typically looks like.

If u1, u2, . . . , uk are sorted such that u1 corresponds to the edge that is higher

to the left and uk corresponds to the edge that is lower to the right, then we

can divide [0, a1) in segments [0, r1), [r1, r2), . . . , [rk, a1) such that for v1 ∈ [0, r1),

ξ2(v1) = ∞, and for v1 ∈ [ri, ri+1), (v1, ξ2(v1)) is in the line {t · ui; t ≥ 0}. To

see why this is true, consider v1 < v′1 and assume that (v1, ξ2(v1)) is in the line

{t · ui; t ≥ 0}. Then (v′1, ξ2(v
′
1)) cannot be strictly above this line, by a similar ar-

gument used in Lemma 5.3.5: look at the allocation curves x2(v1, v2) ≥ x2(v
′
1, v2)

and the payment formula – then player 2must be paying just above the {t·ui; t ≥

0} for v′1 line at least as much as he was paying above this line for v1 and hence

his budgets must be exhausted.
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Figure 5.4: Illustration of the proof of the impossibility theorem: in the first
part we represent the polytope P , in the second we represent
the first main steps: we show that any auction must resemble
VCG in the red region (Fact 5.3.7) and extend the definition
of the auction to the blue region (Facts 5.3.8 and 5.3.9), show-
ing that the budget of player 1 must get exhausted at the point
(1.2381

2
, 1.2381) and the budget of player 2 must get exhausted

at the point (1.2381, 1.2381
2

). We use this fact to show that the al-
location must be constant in the green region (Fact 5.3.10), con-
tradicting Pareto-optimality for allocation of the form (v1, v2)
where 1.2381

2
< v1 <

2
3
as v2 → ∞.

5.3.3 Proof of the Impossibility Theorem

Now, we are ready to prove Theorem 5.3.3, which states that there is no general

auction with all the desirable properties for all polyhedral environments P . We

fix the following setting: a set of feasible allocations

P = {x ∈ R
2
+; 2x1 + x2 ≤ 6, x1 + 2x2 ≤ 6}

and budgets B1 = B2 = 1. Assume that (x, ϕ) is a mechanism with the desirable

properties for this setting. We will use the characterization lemmas in Section

5.3.2 to find a contradiction. We illustrate the flow of the proof in Figure 5.4 (a

brief summary of the proof is given in the caption of the figure).

Fact 5.3.7 In the region [0, 2
3
)× [0, 2

3
), the mechanism (x, ϕ) produces an efficient allo-
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cation (i.e., it is equal to some mechanism of the VCG family).

Proof : First notice that no mechanism in the VCG-family for P exhausts the

budget in [0, 2
3
) × [0, 2

3
). Now, we turn our attention to the mechanism (x, ϕ),

which is a mechanism with the desirable properties for this setting.

In [0, 1
3
)× [0, 2

3
), player 1 cannot exhaust his budget, since x1 ≤ 3 and v1 <

1
3
.

We claim that in this area the mechanism needs to behave like VCG. If there is a

point in this region where x(v) doesn’t maximize vtx for x ∈ P , then the budget

of player 2 must be exhausted. So, there is some (v1, v2) such that for v′2 > v2,

p2(v1, v
′
2) = B2 and for v′2 < v2, x(v1, v

′
2) is in the VCG family. Now, notice that

the allocation for v′2 > v2 must be x2(v
′
2, v1) ≤ x∗

2(v
′
2, v1). This contradicts the

fact that the budget is exhausted for v′2 ↓ v2. So, this shows that (x, ϕ) must

allocate efficiently on [0, 1
3
) × [0, 2

3
). Now, for [0, 2

3
) × [0, 1

3
), we can do the same

argument. Now, what remains are the points in [1
3
, 2
3
) × [1

3
, 2
3
). Let v be such

a point. Notice that for (1
3
− ǫ, v2) and (v1,

1
3
− ǫ), the allocation must be (2, 2)

because of the previous argument. By monotonicity, x(v) = (2, 2) which is the

efficient allocation.

Now, we know how any mechanism (x, ϕ) with the desirable properties

should look like in the red region of Figure 5.4. Next, we try to understand

how it should look in the blue region. In order to do so, we need some defini-

tions. From Lemma 5.3.5 we know that there is a ∈ R2
+ ∪ {(∞,∞)}) such that:

{v; v > a} ⊆ E1 ∩ E2 ⊆ {v; v ≥ a}. We also define:

ṽ2 = min{v2; p1(
v2
2
+, v2) = 1}

ṽ1 = min{v1; p2(v1,
v1
2
+) = 1}
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And we focus on the region R, which we define as the interior of the rectangle

between (0, 0) and (ṽ2/2, ṽ2).

Fact 5.3.8 The budget of player 1 does not get exhausted in R. Also, 2
3
< ṽ2 ≤ 1.2381

Proof : First, assume ṽ2 < 4/3. Then by Fact 5.3.7, the budget of player 1 does

not get exhausted in [0, 2
3
)× [0, 2

3
) and by the definition of ṽ2 and lemma 5.3.6 it

cannot be exhausted for [0, ṽ2
2
) × (1

3
, ṽ2). Notice that a cannot be in this region,

because it would also contradict the definition of ṽ2.

Given this fact, let us analyze how the mechanism should be in this setting.

We do so, by fixing v1 and looking at x2(v1, v2). We can use the same argument

as in the previous fact to argue that x(v1, v2) must be the efficient allocation for

v2 < 2v1 in R and also for all v1 ≤ 1
3
. For v1 > 1

3
and v2 > 2v1, if we allocate as

in VCG, we exceed the budget. So, the allocation for those points must exactly

match the budget of player 2. So, the only possible value must be such that:

2 · 1
2
v1 + (x2(v)− 2)2v1 = 1

and therefore the allocation must be

x(v) =

(

3− 1

v1
, 2 +

1− v1
2v1

)

.

Now, this determines the payment of player 1 in the rectangle. We know that

for δ ↓ 0, ϕ1(
ṽ2
2
− δ, ṽ2 − 3δ) < 1, which we can write as:

lim
δ↓0

ϕ1(
ṽ2
2

− δ, ṽ2 − 3δ) = 2 · ṽ2
2

−
∫ ṽ2/2

1/3

3− 1

z
dz = 1− ṽ2

2
+ log

(

3

2
ṽ2

)

≤ 1

This implies that ṽ2 ≤ 1.2381. Notice that this excludes the fact that ṽ2 > 4/3,

otherwise we could have done the same analysis on [0, 2
3
]× [0, ṽ2] and arrived in

the same conclusion that ṽ2 ≤ 1.2381.
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Fact 5.3.9 ṽ2 = 1.2381 and x( ṽ2
2
+, ṽ2) = (2, 2).

Proof : Since 2
3
< ṽ2 ≤ 1.2381, we know that x2(

ṽ2
2
+, ṽ2) ≥ 2 by using that

x2(
ṽ2
2
+, 1

3
) = 2 (Fact 5.3.7) and monotonicity. Therefore, x1(

ṽ2
2
+, ṽ2) ≤ 2. Writing

the payment for player 1 at this point we get:

1 = ϕ1(
ṽ2
2
+, ṽ2) = x1(

ṽ2
2
+, ṽ2) ·

ṽ2
2

−
∫ ṽ2/2

1/3

3− 1

z
dz ≤ 1− ṽ2

2
+ log

(

3

2
ṽ2

)

which implies that ṽ2 = 1.2381 and x( ṽ2
2
+, ṽ2) = (2, 2), since all inequalities

must be tight.

Fact 5.3.10 ṽ1 = ṽ2 = 1.2381 and x(v) = (2, 2) for all valuation profiles v > ( ṽ1
2
, ṽ2

2
).

Proof : We can apply the same argument exchanging 1 and 2 and conclude that

ṽ1 = ṽ2. Now, to see that for v′1, v
′
2 >

ṽi
2
we have x(v′1, ṽ2) = x(ṽ1, v

′
2) = (2, 2), we

analyze four regions. If v ∈ (ṽi/2, ṽi] × (ṽi/2, ṽi] or v ∈ [ṽi,∞) × [ṽi,∞) we can

use the standard monotonicity argument to show that x(v) = (2, 2).

For the regions [ṽ1,∞) × ( ṽ1
2
, ṽ1) and ( ṽ2

2
, ṽ2) × [ṽ2,∞) is a little trickier. We

do the analysis for the first one. The second is analogous.

Clearly ϕ2(ṽ1, ṽ2) = 1. Now, for v′1 > ṽ1, x(v
′
1, ṽ2) = x(ṽ1, ṽ2) = (2, 2). And for

all v2 we have x1(v
′
1, v2) ≥ x1(ṽ1, v2) and therefore x2(v

′
1, v2) ≤ x2(ṽi, v2). Now,

since ϕ2(v1, v2) = v2x2(v) −
∫ v2
0

x2(v1, u)du clearly ϕ2(v
′
1, ṽ2) ≥ ϕ2(ṽ1, ṽ2) = 1.

Therefore ϕ2(v
′
1, ṽ2) = 1, since the mechanism respects budgets. Notice that

the only way it can be true is that if x2(v
′
1, v2) = x2(ṽi, v2), so we must have

x2(v
′
1, v2) = (2, 2) for v′1 ∈ [ṽi,∞).

We can use the exact same argument for region: ( ṽi
2
, ṽi)× [ṽi,∞).
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Now we are ready to prove Theorem 5.3.3:

Proof of Theorem 5.3.3 : Now, by putting Fact 5.3.10 and Fact 5.3.7 together,

we get a contradiction with the Pareto-optimality: consider ṽi
2

< v1 < 2
3
then

by facts 5.3.10 and 5.3.7 combined, we know that x2(v1, v2) = 0 for v2 < v1
2
and

x2(v1, v2) = 2 for v2 > v1
2
, so the budget of player 2 never gets exhausted even

for v2 → ∞. This contradicts Pareto-optimality for v2 > 2v1, since if his budget

is not exhausted, he should get allocated at least as much as he gets in VCG.

5.3.4 Multi-unit auctions with decreasing marginals

As a by-product of Theorem 5.3.3, we can answer in a negative way the question

of the existence of truthful Pareto-optimal auctions for multi-unit auctions with

decreasing marginals. Consider the following setting:

Setting: Consider a supply of s of a certain divisible good and two players in

such a way that the feasible allocations are (x1, x2) such that x1 + x2 ≤ s. Player

i has a public budget Bi and a private valuation which is a increasing concave

function Vi : [0, s] → R+. Upon getting xi units of the good and paying ϕi,

player i has utility ui = Vi(xi)− ϕi.

It is tempting to believe that one could adapt the clinching framework in

Algorithm 1 to deal with this setting, by simply redefining the demand function

as something like:

di = min

{

Bi

p
,max{xi; ∂Vi(ρi + xi) ≤ p}

}
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where ∂Vi(xi) is the marginal valuation at xi. Indeed, if Vi(xi) = vi · xi, this

recovers the original way of calculating demands. The intuition behind why it

doesn’t work is that some player can increase his declared value on items he

won’t get anyway in order to increase the payment of his opponent, exhausting

his budget earlier. This way, he is able to get items for cheaper in the end.

In the following theorem, we show that no auction mechanism can satisfy

all the desirable properties for this setting:

Theorem 5.3.11 There is no truthful, Pareto-optimal and budget-feasible auction for

this setting.

Proof : Suppose that (x̂(V1, V2), ϕ̂(V1, V2)) is a mechanism satisfying all the de-

sirable properties for multi-unit auctions with decreasing marginals. Then we

can use it as a black-box to construct a mechanism for a general polyhedral envi-

ronment, contradicting Theorem 5.3.3. Given a certain polyhedral environment,

we can describe

P = {x ∈ [0, α]× [0, β]; x2 ≤ h(x1)}

where h : [0, α] → [0, β] is a monotone non-increasing concave function, h(0) =

β and h(α) = 0. Now, using (x̂, ϕ̂) for s = 1, build the following mechanism: if

players report valuations v1, v2 build the following concave functions: V1(x1) =

v1 · αx1 and V2(x2) = v2 · h(α− αx2).

Now, simply define

x(v1, v2) = (αx̂1, h(αx̂1))

ϕ(v1, v2) = ϕ̂(V1, V2).
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The mechanism is clearly truthful, individually rational and budget-feasible. It

is also easy to see that sets of allocation can me mapped 1-1 between those two

settings, preserving Pareto-optimality.
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CHAPTER 6

AUCTIONSWITH ONLINE SUPPLY

We continue the agenda proposed in the last chapter of identifying impor-

tant features of internet advertisement neglected in traditional models and de-

signing mechanisms taking such features into account. In this chapter we focus

on the fact that ad impressions arrive in an online manner and need to be al-

located and priced in real time. This gives rise to an interesting question that

is simultaneously a mechanism design question and an online algorithms ques-

tion.

Pricing items without knowing the exact size of the inventory is a tricky

problem: if the items turned out to be scarce and the competition for them in-

tense, they should end up having high prices. On the other hand, if the items

were abundant and not much competition for them, items should be priced low

by any reasonable mechanism. In the online setting, what should we do when

we get the first item ? At this point, it is unclear if this is the only item we have

to sell or if it is the first of a million items.

Intuitively, the mechanism we will describe in this section will allocate the

first item assuming the supply is small, and then update the allocation and pay-

ments once new items arrive. Players that acquired items at high prices in the

beginning will be compensated by facing cheper prices on future items.

6.1 Online Supply Model

We consider auctions where the feasibility set is not known in advance to the

auctioneer. For each time t ∈ {0, . . . , T}, we associate an environment Pt ⊆ Rn
+,
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which keeps track of the allocations done in times t′ = 1..t 1. In each step, the

mechanism needs to output an allocation vector xt = (xt
1, . . . , x

t
n) ∈ Pt and a

payment vector ϕt = (ϕt
1, . . . , ϕ

t
n) ≥ 0 by augmenting xt−1 and ϕt−1. Given a set

of desirable properties, we would like to maintain them for all t. To make the

problem tractable, have to restrict the set of possible histories {Pt}t≥0. We do so

by defining a partial ordering 4 on the set of feasibility constraints such that if

t ≤ s then Pt 4 Ps.

Our main goal is to design auctions where the auctioneer can allocate and

charge payments ‘on the fly’. The auctioneer will face a set of environments

P1 4 P2 4 . . . 4 Pt and at time t, he needs to allocate xt ∈ Pt and charge ϕt,

maintaining a set of desirable properties. He doesn’t know if Pt will be the final

outcome, or if some new environment Pt+1 < Pt will arrive, in which case he

will need to augment xt ∈ Pt to an allocation xt+1 in Pt+1. It is crucial that his

decision at time t doesn’t depend the knowledge about Pt+1.

Definition 6.1.1 (Online Supply Model) Consider a family of feasibility allocation

constraints indexed by F , i.e, for each f ∈ F associate a set of feasible allocation vectors

P f ⊆ Rn
+ (a set P f is often called environment). Also, consider a partial order4 defined

over F such that if f 4 f ′ then P f ⊆ P f ′

. An auction for environment P f consists of

functions xf : Θ = ×iΘi → P f and ϕf : Θ → Rn
+.

An auction in the strong online supply model for (F ,4) is a family of auctions

such that xf ≤ xf ′

and ϕf ≤ ϕf ′

whenever f 4 f ′. Moreover, we say that the auction

satisfies a certain property if it satisfies this property for each f (e.g. the auction is

incentive compatible if for each f ∈ F , (xf , ϕf) is an incentive compatible auction).

1We want to stress the fact that Pt doesn’t represent the set of allocations allowed at time t,
but the set of allocations allowed until time t. The set of new possible allocations in time t is the
difference between Pt and Pt−1
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An auction in the weak online supply model for (F ,4) is essentially the same,

except that we drop the requirement of ϕf ≤ ϕf ′

. The intuition is that we are required

to allocate goods online, but are allowed to charge payments only in the end.

The main idea behind the definition is that if at some point the auctioneer

runs the auction (xf , ϕf) for some environment P f and at a later time some

more goods arrive perhaps with new constraints such that the environment is

augmented to P f ′

with f ′ < f , then the auctioneer can run (xf ′

, ϕf ′

) and aug-

ment the allocation of player i by xf ′

i (v) − xf
i (v) goods and charge him more

ϕf ′

i (v)− ϕf
i (v).

Example 6.1.2 (Multi-unit auctions) Let ∆s = {x ∈ Rn
+;
∑

i xi ≤ s} and define

FMU = {∆s; s ≥ 0} and let ∆s 4
MU ∆t iff s ≤ t. Let the value of player i for one

unit of the good, vi, lies in Θi = R+. Now ui = vixi − ϕi. Thus, we are in a simple

multi-unit auction setting. In this setting, VCG is incentive compatible, individually

rational and efficient (in the sense that it has those three properties once run for each

∆s) auction in the strong online model for (FMU,4MU).

Example 6.1.3 (Multi-unit auctions with capacities) Curiously, if players have

capacity constraints, i.e., their utilities are ui = vi min{xi, Ci}−ϕi, then the VCG allo-

cations for (FMU,4MU) are still monotone in the supply, but the payments are not. For

example, consider two agents with values v1 = 1, v2 = 2 and capacities C1 = C2 = 1.

With supply 1, one item is allocated to player 2 and he is charged 1. With supply 2,

both players get one unit of the item, but the VCG prices are zero. Therefore, there is

no incentive compatible, individually rational and efficient in the strong online model.

Babaioff, Blumrosen and Roth [11] strengthen this result showing that no Ω(log log n)-

approximately efficient auction exists in the strong online model.
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Example 6.1.4 (Polymatroidal auctions) Now, let FPM be the set of all polyma-

troidal domains and consider the naive-partial-order 4N to be such that f 4 f ′ iff

P f ⊆ P f ′

. The VCG is not even online in the weak sense for (FPM,4N). Consider the

following example:

P f = {x ∈ R
2
+; x1 ≤ 2, x2 ≤ 2, x1 + x2 ≤ 3} and P f ′

= {x ∈ R
2
+; x1 + x2 ≤ 4}

then clearly f 4 f ′ but if v1 > v2. xf (v) = (2, 1) but xf ′

= (4, 0) violating the

monotonicity property. But now, let’s define a different partial order 4PM such that

f 4PM f ′ if there is a polymatroid P ′ such that P f ′

= P f + P ′ where the sum is the

Minkowski sum. In the following lemma, we show that VCG is an auction in the strong

online model for (FPM,4PM).

Lemma 6.1.5 VCG is an auction in the strong online model for (FPM,4PM).

Proof : Assume that P f , P f ′

, P ′ are defined respectively by the monotone sub-

modular functions f, f ′, g. If P f ′

= P f +P ′, then by McDiarmid’s Theorem [61],

f ′ = f + g.

Now, let’s remind how VCG allocated for this setting. If the polymatroid is

defined by f , VCG begins by sorting the players by their value (and breaking

ties lexicographically). So, we can assume v1 ≥ . . . ≥ vn. Then it chooses the

outcome:

xi = f([i])− f([i− 1])

ϕi = vi+1 · (f([i+1] \ i)− f([i−1])−xi+1)+
∑

j>i+1

vj · (f([j] \ i)− f([j−1] \ i)−xj)

where [i] is an abbreviation for {1, . . . , i}. Now, once we do this for f, f ′ we no-

tice that the allocation and payments for f ′ are simply the sum of the allocation

and payments for f and g, hence they are monotone along 4PM.
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One interesting property of incentive-compatible auctions in the online sup-

ply model is that utilities are monotone with the supply. If bidders have the

option of leaving in each timestep collecting their current allocations for their

current payment, they still (weakly) prefer to stay until the end of the auction.

Lemma 6.1.6 (Utility monotonicity) Consider a setting where agents have single-

parameter valuations Θi = R+ and quasilinear utilities ui = vixi − ϕi. Given a

truthful auction in the weak online supply model and f 4 f ′, then the utility of agent i

increased with the supply, i.e.: uf ′

= vix
f ′ − ϕf ′

i ≥ vix
f − ϕf

i = uf

Proof : The proof follows directly from Myerson’s characterization [64] of pay-

ments in quasi-linear settings: uf ′

= vix
f ′

i − ϕf ′

i =
∫ vi
0

xf ′

i (u)du ≥
∫ vi
0

xf (u)du =

vix
f − ϕf

i = uf .

6.2 Clinching Auctions and Supply Monotonicity

Our main theorem states that the Adaptive Clinching Auction (defined in

Dobzinski, Lavi and Nisan [32] and Bhattacharya el al [13]) is an incentive-

compatible auction in the strong online supply model for budget constrained

agents in the multi-unit setting. Formally:

Theorem 6.2.1 Given n agents with public budgets Bi and single-dimensional types

vi ∈ R+ such that their utility is given by ui = vixi − ϕi if ϕi ≤ Bi and ui = −∞

otherwise, the Adaptive Clinching Auction is an auction in the strong online supply

model for (FMU,4MU). In other words, if x(v, B, s) and ϕ(v, B, s) is the outcome
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of the auction for valuation profile v, budgets B and supply s, then if s ≤ s′, then:

x(v, B, s) ≤ x(v, B, s′) and ϕ(v, B, s) ≤ ϕ(v, B, s′).

Notice that this is in sharp contrast with what happens in Example 6.1.3

where getting a Pareto optimal auction in the strong online model is not possi-

ble, not even in an approximate way 2. This is somewhat surprising, since ca-

pacity constraints on the allocations are usually more nicely-behaved compared

to budget constraints.

Before proving the result, we review the Adaptive Clinching Auction [13,

32], presenting it in a way which will be more convenient for the proof.

6.2.1 Adaptive Clinching Auction

The Adaptive Clinching Auction is essentially the version of the Clinching Auc-

tion described in Section 5.2 for the Uniform Matroid (i.e. f(S) = 1, ∀S) in the

limit as the price increase ǫ goes to zero. In what follows, we review its main

properties and present the infinitesimal version.

The clinching auction takes as input the valuation profile v, the budget pro-

file B and the initial supply s, then it runs a procedure based on the ascending

price framework to determine final allocation and payments. There is a price

clock p, and for each price, the auction mantains3 xi(p) denoting the current al-

location of player i and Bi(p), which is the current remaining budget of player

i. Initially, xi(0) = 0 and Bi(0) = Bi, their initial budget. For each p, the auction

2for that setting, since there are no budgets, Pareto optimality boils down to efficiency.
3note that here we prefer to index the ascending process by the price itself rather then an

external variable, like in Bhattacharya el al [13].
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defines the values of the right-derivatives ∂pxi(p) and ∂pBi(p) and described its

behavior in the points in which it is discontinuous. Notice we will use ∂pf(p) to

denote the right-derivative of f at p.

For simplicity, we define the auction and prove our results for valuation pro-

files v such that vi 6= vj for each i 6= j (we call it a profile in generic form) This

is mainly a technical assumption to avoid over-complicating the statement and

the proof. For the definition and its subsequent discussion, we will use the fol-

lowing implicitly defined notation:

• remnant supply: S(p) = s−∑i xi(p)

• active players: A(p) = {i; vi > p}

• clinching players: C(p) = {i ∈ A(p);S(p) =
∑

j∈A(p)\i
Bj(p)

p
}

• maximum remaining budget:B∗(p) = maxi∈A(p)Bi(p)

• for any function f , let f(p̄−) = limp↑p̄ f(p) and f(p̄+) = limp↓p̄ f(p)

Definition 6.2.2 (Adaptive Clinching Auction) Given as input a valuation vec-

tor v in generic form, a budget vector B and initial supply s, consider the functions

xi(p), Bi(p) such that:

(i) xi(0) = 0 and Bi(0) = Bi.

(ii) ∂pxi(p) = S(p)
p

and ∂pBi(p) = −S(p) if i ∈ C(p) and ∂pxi(p) = ∂pBi(p) = 0

otherwise.

(iii) the functions xi and Bi are right-continuous at all points p, i.e., xi(p) = xi(p+)

and Bi(p) = Bi(p+) for all p and it is left-continuous at all points p /∈

{v1, . . . , vn}, i.e., xi(p−) = xi(p) and Bi(p−) = Bi(p) for all p /∈ {v1, . . . , vn}
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(iv) for p = vi, let δj =
[

S(vi−)−∑k∈A(vi)\j
Bk(vi−)

vi

]+

. For j ∈ A(vi), let xj(vi) =

xj(vi−) + δj and Bj(vi) = Bj(vi−) − viδj and for j /∈ A(vi), xj(vi) = xj(vi−)

and Bj(vi) = Bj(vi−).

The existence and uniqueness of those functions follow from elementary real anal-

ysis. The outcome associated with v, B, s is xi = limp→∞ xi(p) and ϕi = Bi(0) −

limp→∞Bi(p). Notice that this is well defined since x and B are constant for p >

maxi vi.

The verb clinch means acquiring goods that are underdemanded at the cur-

rent price. So clinching a δi amount at price p means receiving δi amount of the

good and paying δip for it. Whenwe refer to a player clinching some amount, ei-

ther we refer to the infinitesimal clinching happening in (ii) or the player clinch-

ing positive units in (iv).

Theorem 6.2.3 (Bhattacharya et al [13]) The Adaptive Clinching Auction in Defi-

nition 6.2.2 is incentive-compatible, individually-rational, budget-feasible and produces

Pareto-optimal outcomes.

As one can possibly guess, it is possible to solve the differential equation in

each interval between two adjacent values of vi and give an explicit descrip-

tion of the clinching auction. We do so in Section 6.3. Nevertheless, we mostly

prove our results using the differential form in Definition 6.2.2 which is more

insightful than the explicit version.

Example 6.2.4 At this point, it is instructive to consider an example of the auction.

Consider an auction between n = 4 players with valuations v = [9, 10, 11, 5.7] and
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B = [3, 2, 1, .5]. The functions xi(p), Bi(p) are depicted in Figure 6.1. For p < p10 =

3.5, the clinching set C(p) is empty. At this price S(p10) = 1 = 2+1+0.5
3.5

=
∑

j 6=1
Bj

p
, so

player 1 alone begins clinching.

Since he is clinching alone for a while, x1(p) = s − S(p). Now by derivating this

expression we get that S(p)
p

= ∂px1(p) = −∂pS(p). Solving for the supply with the

condition that S(p10) = 1, we get: S(p) =
sp10
p

and x1(p) = s − sp10
p
. This continues

while no other player enters the clinching set. The supply function S(p) is illustrated

in the first part of Figure 6.2.

Notice that for this period, the budget of 1 is being spent while the budgets of the

other agents are intact. Eventually, the budget of 1 meets the budget of 2, and at this

point, those two players are indistinguishable from the perspective of the differential

procedure as long as both are active. Therefore, both start spending their budget at the

same rate and acquiring goods at the same rate ∂px1(p) = ∂px2(p) = S(p). Since from

this point on S(p) = s − x1(p) − x2(p), then
S(p)
p

= ∂px1(p) = −1
2
∂pS(p). Solving

again for the supply and the boundary condition S(p20) =
sp10
p20

we get: S(p) =
sp10p

2
0

p2
.

Using this, one can calculate x1(p) and x2(p). Both continue clinching at the same rate

until the price reaches p = v4, where player 4 exits the active set prompting the agents

to clinch a positive amount according to (iv).

Their allocation xi(p) and budgets Bi(p) are discontinuous at this point, but con-

tinue to follow the differential procedure after this point, having their budgets all equal

(not coincidentally, as we will see in Lemma 6.2.11), until price p = v1 is reached and

player 1 exits the active set. At this point, all the remaining active players clinch a

positive amount according to (iv) that exhausts the supply. Therefore, allocations and

budgets are constant from this point on.
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Figure 6.1: The functions x(p) and B(p) for an auction in Example 6.2.4

p1
0

p2
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S(p)

v4 v1

p

p1
0

p2
0

v4 v1

p

Ψ1(p)

Ψ2(p)

Ψ3(p)

Figure 6.2: Supply S(p) and wishful allocation Ψ(p) for an auction in Ex-
ample 6.2.4

One important tool in analyzing this auction is the concept of the wishful

allocation. We define a Ψi(p) as a function of xi(p) and Bi(p)which is continuous

even at the points where xi(p) and Bi(p) are not. It is carefully set up so that the

discontinuities from both functions cancel out. Intuitively, it represents a sum of

what the player acquired already at the current price xi(p) with the maximum

amount he would like to acquire at this price, which is Bi(p)
p

.

Definition 6.2.5 (Wishful allocation) The wishful allocation is defined as Ψi(p) =

xi(p) +
Bi(p)

p
.
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Lemma 6.2.6 The wishful allocation is continuous and right-differentiable for all p ≥

0. Moreover, its right-derivative is given by: ∂pΨi(p) = −Bi(p)
p2

.

Proof : The function Ψi(p) is clearly continuous for p /∈ {v1, . . . , vn} and right-

continuous everywhere. Now, we claim that it is also left-continuous at vj , i.e.,

Ψ(vj−) = Ψ(vj). This fact is almost immediate:

Ψi(vj) = xi(vj)+
Bi(vj)

vj
= [xi(vj−)+δi]+

[Bi(vj−)− δivj ]

vj
= xi(vj−)+

Bi(vj−)

vj
= Ψi(vj−)

Calculating its derivative is also easy:

∂pΨi(p) = ∂p

[

xi(p) +
Bi(p)

p

]

= ∂pxi(p) +
∂pBi(p)

p
− Bi(p)

p2
= −Bi(p)

p2

since ∂pxi(p) =
S(p)
p

= −∂pBi(p)
p

.

Since Ψi(p) ≥ xi(p) and is a monontone non-increasing function converging

to the final allocation as p → ∞, it constantly gives us an upper bound of the

final allocation.

Now, we study some other properties of the above auction, which will be

useful in the proof of our main theorem. First we prove a Meta Lemma that sets

the basic structure for most of our proofs. The lemma is based on elementary

facts of real analysis.

Meta-Lemma 6.2.7 Given a property Λ that depends on p, if we want to prove for all

p ≥ p0, it is enough to prove the following facts:

(a) it holds for p = p0.

(b) if Λ holds for p, then there is some ǫp > 0 such that Λ holds for [p, p+ ǫp)
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(c) if Λ holds for all p′ such that p0 ≤ p′ < p, then Λ also holds for p.

Proof : Let F = {p ≥ p0; Λ doesn’t hold for p}. We want to show that if the

properties (a),(b),(c) in the statement hold, then F = ∅. Assume for contradic-

tion that (a),(b),(c) hold but F 6= ∅. Let p̄ = inf F , i.e., the smallest p̄ such that for

all ǫ > 0, [p̄, p̄+ δ) ∩ F 6= ∅ for all δ > 0.

Now, there are two possibilities:

(1) either p̄ /∈ F , in this case we can invoke (b) to see that there should be an

ǫ > 0 such that [p̄, p̄+ ǫ) ∩ F = ∅ which contradicts the fact that p̄ = inf F .

(2) or p̄ ∈ F . By (a), we know p̄ > p0. Then we can use that by the definition

of inf, Λ holds for all p < p̄, so we can invoke (c) to show that Λ should hold for

p̄. And again we arrive in a contradiction.

For most properties Λ that we want to prove about the Adaptive Clinching

Auction, part (a) is easy to show, part (b) requires using the right-continuity of

the function and the value of the right-derivatives given in item (ii) of Defini-

tion 6.2.2 and part (c) is usually proved using continuity for p /∈ {v1, . . . , vn} and

using part (iv) of Definition 6.2.2.

The first two lemmas (whose proof is based on the Meta-Lemma) state that

once a player start acquiring goods (i.e. ∂pxi(p) > 0), he continues to do so for

all the prices until p becomes equal to his value vi.

Lemma 6.2.8 Once a player i enters the clinching set, then he is in the clinching set

until he becomes inactive, i.e., if i ∈ C(p) for some p, then i ∈ C(p′) for all p′ ∈ [p, vi).
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Proof : The proof is based on the Meta Lemma. Part (a) is trivial.

For part (b), there is ǫ > 0 such that in [p, p + ǫ) the active set is the same

as A(p). We will show that if i ∈ C(p), then i ∈ C(p′) for all p′ ∈ [p, p + ǫ),

or in other words: S(p′) =
∑

j∈A(p)\i
Bj

p′
. This equality holds for p. Now, we will

simply show that the derivative of both sides is the same in the [p, p+ǫ) interval,

i.e.: ∂pS(p) = ∂p
∑

j∈A(p)\i
Bj(p)

p
.

∂p
∑

j∈A(p)\i

Bj(p)

p
=

p[
∑

j∈A(p)\i ∂pBj(p)]−
∑

j∈A(p)\i Bj(p)

p2
=

=
1

p

∑

j∈C(p)\i
∂pBj(p)−

1

p
S(p) = −

∑

j∈C(p)\i

1

p
S(p)− 1

p
S(p)

= −
∑

j∈C(p)

∂pxj(p) = −
∑

j∈A(p)

∂pxj(p) = ∂pS(p)

For part (c), it is trivial for p /∈ {v1, . . . , vn} by left-continuity: if S(p′) =
∑

j∈A(p′)\i
Bj

p′
for p′ < p and the functions involved are left-continuous, then it

holds for p. Now, for p = vj , if S(vj−) =
∑

k∈A(vj−)\i
Bk(vj−)

vj
, then for δk as

defined in (iii) of Definition 6.2.2 we have:

S(vj) = S(vj−)−
∑

k∈A(vj)

δk =

=





∑

k∈A(vj)\i

Bk(vj−)− δkvj
vj



+
Bj(vj−)

vj
− δi =

∑

k∈A(vj)\i

Bk(vj)

vj

since:

δi =



S(vj−)−
∑

k∈A(vj)\i

Bk(vj−)

vj





+

=

=





∑

k∈A(vj−)\i

Bk(vj−)

vj
−

∑

k∈A(vj)\i

Bk(vj−)

vj





+

=
Bj(vj−)

vj
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Lemma 6.2.9 For each price p and each active player i, S(p) ≤∑j∈A(p)\i
Bj(p)

p
.

Proof : Again we prove it using the Meta Lemma. (a) is trivial, for (b) if S(p) <
∑

j∈A(p)\i
Bj(p)

p
, then by right-continuity the strict inequality continues to hold in

some region [p, p + ǫ). If S(p) =
∑

j∈A(p)\i
Bj(p)

p
we can do the same analysis as

in Lemma 6.2.8. For (c) it is again trivial for p /∈ {v1, . . . , vn} by left-continuity

and for p = vj we use the fact that comes directly from the proof of the previous

lemma:

S(vj)−
∑

k∈A(vj )\i

Bk(vj)

vj
=



S(vj−)−
∑

k∈A(vj−)\i

Bk(vj−)

vj



+
Bj(vj−)

vj
−δi ≤ 0 (6.1)

by the definition of δi, since:

δi =



S(vj−)−
∑

k∈A(vj)\i

Bk(vj−)

vj





+

≥



S(vj−)−
∑

k∈A(vj−)\i

Bk(vj−)

vj



+
Bj(vj−)

vj

Corollary 6.2.10 If at price p = vj , player i ∈ A(vj) acquires any positive amount

of the good δi > 0, then he enters in the clinching set (if he wasn’t previously), i.e.,

i ∈ C(vj).

Proof : If δi > 0, then, δi = S(vj−) −∑k∈A(vj)\i
Bk(vj−)

vj
. Substituting that in

equation (6.1) we get that S(vj) =
∑

k∈A(vj)\i
Bk(vj)

vj
and therefore i ∈ C(vj).

A crucial observation for our proof is that the evolution of the profile of

remaining budgets follows a very structured format. At any given price, the re-

maining budget of an agent is either his original budget or themaximumbudget

among all agents. It is instructive to observe that in Figure 6.1.
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Lemma 6.2.11 For each price p, ifC(p) 6= ∅, thenC(p) = {i ∈ A(p);Bi(p) = B∗(p)}.

Proof : It is easy to see that all bidders in the clinching set have the same re-

maining budget, since if i, i′ ∈ C(p), then
∑

j∈A(p)\i
Bj(p)

p
= S(p) =

∑

j∈A(p)\i′
Bj(p)

p

and therefore Bi(p) = Bi′(p). Also, clearly, all players with the same budget will

be in the clinching set. The fact that the players clinching have the largest bud-

get follows directly from Lemma 6.2.9.

Corollary 6.2.12 For each i ∈ A(p), Bi(p) = min{Bi(0), B∗(p)}.

6.2.2 Supply Monotonicity

Now we are ready to prove Theorem 6.2.1 which is our main result. For that

we fix a budget profile B and a valuation profile v in generic form (i.e. vi 6= vj

for i 6= j, which is not needed for the proof and is mainly intended to simplify

the exposition). Now, we consider two executions of the adaptive clinching

auction. One with initial supply sb which we call the base auction and one with

initial supply sa ≥ sb which we call the augmented auction. Running the base

and augmented auction with the same valuations and budgets we get functions

xb(p), Bb(p) and xa(p), Ba(p). From this point on, we use superscripts b and a

to refer to the base and augmented auctions respectively. For the set of active

players at a given price, we omit the superscript, since Ab(p) = Aa(p) for all p.

As the first step toward the proof of Theorem 6.2.1, we prove that the pay-

ments are monotone with the supply, that the final payment of each agent in the

augmented auction is higher than in the base auction:
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Proposition 6.2.13 (Payment Monotonicity) Given the base and augmented auc-

tion as defined above, then for all p ≥ 0 and all agents i, Bb

i (p) ≥ Ba

i (p).

Proof : The first part of the proof consists of showing that clinching starts first

in the augmented auction. Then we divide the prices in three intervals: in the

first where no clinching happens in both auctions, in the second where clinch-

ing happens only in the augmented auction and the third in which clinching

happens in both auctions. Then we prove the claim in each of the intervals.

First part of the proof: Clinching starts earlier in the augmented auction

Let pb0 = min{p;Cb(p) 6= ∅} and pa0 = min{p;Ca(p) 6= ∅}. We claim that

pa0 ≤ pb0. In order to see that, assume the contrary: pb0 < pa0. At pb0, there is one

agent i such that Sb(pb0) =
∑

k∈A(pb0)\i
Bb

k
(pb0)

pb0
. If pb0 /∈ {v1, . . . , vn}, then by Corollary

6.2.10, no budget was spent in neither of the auctions at this price and no goods

were acquired, so Sb(pb0) = sb, Sa(pb0) = sa, Bb

k(p
b

0) = Bb

k(0) and Ba

k(p
b

0) = Ba

k(0).

This implies that at this point Sa(pb0) > Sb(pb0) =
∑

k∈A(pb0)\i
Ba

k
(pb0)

pb0
, which contra-

dicts Lemma 6.2.9 for the augmented auction. Now, the case left to analyze is the

one where pb0 = vj for some j 6= i and i entered the clinching set after acquiring

a positive amount of good δbi > 0 at price vj . Then: δ
b

i = sb−∑k∈A(vj)\i
Bk(0)
vj

> 0.

But in this case δai > 0, contradicting that pa0 > pb0.

Second part of the proof: Proof for the first interval [0, pa0).

For the p in the interval [0, pa0), no clinching occurs, so Ba

i (p) = Ba

i (0) =

Bb

i (0) = Bb

i (p).
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Third part of the proof: Proof for the second interval [pa0, p
b

0).

In the interval [pa0, p
b

0), some players are acquiring goods in the augmented

auction but no player is neither acquiring goods nor paying anything in the base

auction, so: Ba

i (p) ≤ Ba

i (0) = Bb

i (0) = Bb

i (p).

Fourth part of the proof: Proof for the third interval [pb0,∞).

In this interval, both players are clinching. Now, we use the Meta Lemma to

show that for all p ≥ pb0, the property Bb

i (p) ≥ Ba

i (p) for all i holds.

For part (a) of the Meta Lemma, we need to show that Bb

i (p
b

0) ≥ Ba

i (p
b

0). If

pb0 /∈ {v1, . . . , vn} this follows directly from continuity and the third part of the

proof. If pb0 = vj for some j, then by the previous cases we know that Ba

i (vj−) ≤

Bb

i (vj−). We have that Ba

i (vj) = Ba

i (vj−) − δai vj and Bb

i (vj) = Bb

i (vj−) − δbi vj .

Now we analyze the clinched amounts δai and δbi . If p
a

0 = pb0, it is straightforward

to see that δai ≥ δbi and therefore Ba

i (vj) ≤ Bb

i (vj). So, let’s focus on the case

where pa0 < pb0. For this case:

δai =



Sa(vj−)−
∑

k∈A(vj)\i

Ba

k(vj−)

vj





+

=

=





∑

k∈A(vj−)

Ba

k(vj−)

vj
− Ba

∗(vj−)

vj
−

∑

k∈A(vj)\i

Ba

k(vj−)

vj





+

=

=

[

Ba

i (vj−)

vj
+

Ba

j (vj−)

vj
− Ba

∗(vj−)

vj

]+

=

=
1

vj
[min{Bi(0), B

a

∗(vj−)} +min{Bj(0), B
a

∗(vj−)} − Ba

∗(vj−)]+

where the last step is an invocation of Corollary 6.2.12. For the base auction
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we have essentially the same, except that Sb(vj−) ≤ ∑

k∈A(vj−)
Bb

k
(vj−)

vj
− Bb

∗
(vj−)

vj

holds as an inequality rather than equality, so we get:

δbi ≤
[

Bb

i (vj−)

vj
+

Bb

j (vj−)

vj
− Bb

∗(vj−)

vj

]+

=

=
1

vj

[

min{Bi(0), B
b

∗(vj−)}+ min{Bj(0), B
b

∗(vj−)} − Bb

∗(vj−)
]+

In order to prove that Ba

i (vj) ≤ Bb

i (vj), we study two cases:

• Case A: Ba

∗(vj−) ≤ Ba

j (0), i.e. B
a

j (vj−) = Ba

∗(vj−). In this case, δai =
Ba

i (vj−)

vj

and therefore Ba

i (vj) = 0, so, it is trivial that Ba

i (vj) = 0 ≤ Bb

i (vj).

• Case B: Ba

∗(vj−) > Ba

j (0). Now, consider the function Φ(β) = [min{β, µ}+

min{β, γ} − β]+ for β ≥ min{µ, γ}. This function is monotone non-

increasing in such range. Now, take µ = Bi(0), γ = Bj(0) and use that

Ba

∗(vj−) ≤ Bb

∗(vj−) to conclude that δai = Φ(Ba

∗(vj−)) ≥ Φ(Bb

∗(vj−)) ≥ δbi .

This implies Ba

i (vj) ≤ Bb

i (vj).

This finishes the proof of part (a) of the Meta Lemma.

Now, for part (b) of the Meta-Lemma, consider two cases:

• Ba

∗(p) < Bb

∗(p), then by right-continuity of the budget function, there is

some ǫ > 0 such Ba

∗(p
′) < Bb

∗(p
′) for any p′ ∈ [p, p+ ǫ).

• Ba

∗(p) = Bb

∗(p), therefore, B
a

i (p) = Bb

i (p) for all i ∈ A(p), moreover, Sa(p) =

Sb(p), since

Sa(p) =
∑

i∈A(p)

Ba

i (p)

p
− Ba

∗(p)

p
=
∑

i∈A(p)

Bb

i (p)

p
− Bb

∗(p)

p
= Sb(p)
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Since the behavior of the function B(·) for p′ ≥ p just depends on S(p) and

B(p), for all p′ ≥ p, then for all p′ ≥ p,Ba(p) = Bb(p). In other words, when

Bb

∗(p) and Ba

∗(p) meet, then the auctions become fully coupled.

Part (c) of the Meta-Lemma is essentially the same argument made in item

(a). This part is trivial for p /∈ {v1, . . . , vn} by continuity of B(p). For p = vj we

use that Ba

∗(vj−) ≤ Bb

∗(vj−) and study δai and δbi . As in (c) we get:

δai =
1

vj
[min{Bi(0), B

a

∗(vj−)} +min{Bj(0), B
a

∗(vj−)} −Ba

∗(vj−)]+

δbi =
1

vj

[

min{Bi(0), B
b

∗(vj−)} +min{Bj(0), B
b

∗(vj−)} −Bb

∗(vj−)
]+

Now, by analyzing cases A and B as in part (a) of the Meta-Lemma, we conclude

that Ba

i (vj) = Ba

i (vj−)− vjδ
a

i ≤ Bb

i (vj−)− vjδ
b

i = Bb

i (vj) as desired.

Now, we want to establish allocation monotonicity, i.e., that xai (p) ≥ xbi (p)

for all p ≥ 0. We will prove a stronger claim, that the wishful allocation Ψi is

monotone in the supply, i.e., Ψa

i (p) ≥ Ψb

i (p) for all p ≥ 0.

Proposition 6.2.14 (Allocation Monotonicity) For all p ≥ 0 and all agents i, the

following invariant holds: Ψb

i (p) ≤ Ψa

i (p).

Proof : This proof follows from combining Proposition 6.2.13 and Lemma 6.2.6.

For small values of p, Ψb

i (p) ≤ Ψa

i (p) is definitely true, since both are equal to Bi

p
.

Now, if it is true for some small p, then it is true for any p′ ≥ p, since:

Ψa

i (p
′) = Ψa

i (p)−
∫ p′

p

Ba

i (ρ)

ρ2
dρ ≥ Ψb

i (p)−
∫ p′

p

Bb

i (ρ)

ρ2
dρ = Ψb

i (p
′).
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The proof of our main theorem follows immediately from Propositions 6.2.13

and 6.2.14.

Proof of Theorem 6.2.1 : For the allocation monotonicity, Proposition 6.2.14

implies that xai (p) +
Ba

i (p)

p
≥ xbi (p) +

Bb

i (p)

p
. Since Ba

i (p) ≤ Bb

i (p), then clearly:

xai (p) ≥ xbi (p), taking p → ∞ we get that for each player i, the final allocation in

the augmented auction and in the base auction are such that xai ≥ xbi .

The monotonicity of the payment function follows directly from Proposition

6.2.13. The remaining budget in the end is larger in the base auction then in the

augmented auction for each agent. So, the final payments are such that ϕa

i ≥ ϕb

i .

6.3 Algorithmic Form of the Adaptive Clinching Auction

We presented the Adaptive Clinching Auction in Definition 6.2.2 as the limit

as p → ∞ of a differential procedure following Bhattacharya el al [13]. Here

we present the same auction in an algorithmic format, i.e., an Õ(n) steps pro-

cedure to compute (x, ϕ) from (v, B, s). The idea is quite simple: given a price

p and the values of B(p), x(p), we solve the differential equation in item (i) of

Definition 6.2.2 and using it, we compute the next point p̄ where either a player

leaves the active set, or a player enters the clinching set. Given that, we compute

B(p̄−), x(p̄−). Then we obtain the values of B(p̄), x(p̄) either by the procedure

in (iv) if a player leaves the active set on p̄ or simply by taking B(p̄) = B(p̄−)
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and x(p̄) = x(p̄−) otherwise.

Lemma 6.3.1 Consider the functions x(p) and B(p) obtained in the Adaptive Clinch-

ing Auction. If for prices p′ ∈ [p, p̄), the clinching and active set are the same, i.e.,

C(p′) = C(p) and A(p′) = A(p), then given k = |C(p)|, the players i in the clinching

set are such that:

• if k = 1, S(p′) = pS(p)
p′

, xi(p
′) = xi(p) + [S(p′) − S(p)] and Bi(p

′) = Bi(p) +

pS(p)[log p− log p′].

• if k > 1, S(p′) = pkS(p)
(p′)k

, xi(p
′) = xi(p) +

1
k
[S(p′)− S(p)] and Bi(p

′) = Bi(p) +

pkS(p)
k−1

[

1
p′k−1 − 1

pk−1

]

Proof : The proof is straightforward. For the case of k = 1, we follow the

discussion in Example 6.2.2: let i be the only player in C(p), then S(p′) + xi(p
′)

is constant in this range, since all that is subtracted from the supply is added to

the allocation of player 1, therefore:

∂S(p′) = −∂pxi(p
′) = −S(p′)

p′
⇒ S(p′) =

α

p′
.

using the boundary condition S(p) = α
p
, we get the value of α = pS(p). Now,

clearly x(p′) = x(p) + [S(p′)− S(p)], since player i is the only one clinching. For

his budget:

Bi(p
′)−Bi(p) =

∫ p′

p

∂pBi(ρ)dρ =

∫ p′

p

−S(ρ)dρ =

∫ p′

p

−pS(p)

ρ
dρ = pS(p)[log p−log p′]

For k > 1, S(p′) +
∑

i∈C(p′) xi(p
′) is constant and therefore:

∂S(p′) = −
∑

i∈C(p′)

∂pxi(p
′) = −k

S(p′)

p′
⇒ S(p′) =

α

(p′)k
.
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Using the boundary condition S(p) = α
pk
, we get the value of α = pkS(p). We

use the observation in Lemma 6.2.11 that players in the clinching set have the

same budget, and therefore the auction treats them equally from this point on

as long as they remain in the active set, i.e., they will get allocated and charged

at the same rate. Therefore: x(p′) = x(p) + 1
k
[S(p′)− S(p)]. For the budgets:

Bi(p
′)− Bi(p) =

∫ p′

p

−S(ρ)dρ =

∫ p′

p

−pS(p)

ρk
dρ =

pkS(p)

k − 1

[

1

(p′)k−1
− 1

pk−1

]

Theorem 6.3.2 (Algorithmic Form) It is possible to compute the allocation and pay-

ments of the Adaptive Clinching Auction in Õ(n) time.

Proof : Using the lemma above, we just need to compute x andB for the points

where one of the following events happen: (a) one leaves the active set and (b)

one player enters the clinching set. Clearly there are at most n events of type (a)

and by Lemma 6.2.8 also at most n events of type (b).

The algorithm starts at price p = 0 and at each time computes the next event.

For example, at price p = 0, the next event of type (a) occurs in p = mini vi. The

next event of type (b) occurs at price p = 1
s
[
∑

ABi −maxABi] if no event of type

(a) happens before. First we compute which one occurs first. Let p̄ be such a

price. Then, computing B(p̄−), x(p̄−) is trivial, since no clinching happened so

far, so at that price: B(p̄−) = B (initial budgets) and x(p̄−) = 0. Now, if p̄ is an

event of type (a), then use step (iv) in Definition 6.2.2 to compute x(p̄), B(p̄). If

not, simply take B(p̄) = B(p̄−) and x(p̄) = x(p̄−).

From this point on, at each considered price p, the clinching set will be non-

empty, so we know the format of x(p′) and B(p′) for p′ ∈ [p, p + ǫ). If the next
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event that happens is of type (a), it happens at min{vj ; vj > p}, if it is of type

(b), it happens at min{p′;B∗(p
′) = maxi′∈A(p′)\C(p′)Bi′}, where the expression for

B(p′) is given in the previous lemma. For example, if |C(p)| = 1, then this

happens at:

p′ = exp

[

1

pS(p)
(B∗(p)−maxi′∈A(p)\C(p) Bi′(p)) + log p

]

and if |C(p)| = k > 1, it happens at:

p′ =

[

1

pk−1
− (B∗(p)−maxi′∈A(p)\C(p) Bi′(p))

pkS(p)
· (k − 1)

]−1/(k−1)

Those expressions are easily obtained by takingBi(p
′) as calculated in the previ-

ous lemma and calculating for which p′ it becomes equal tomaxi′∈A(p)\C(p) B
′
i(p).

Now, we simply need to find out which of those events happen first. Let it be

p̄, then we compute B(p̄−), x(p̄−) using the previous lemma and then update to

B(p̄), x(p̄) as described above.

Accompaigning this thesis we also provide an implementation of the algo-

rithm described above. The implementation can be found in clinching.m ,

which is an Octave code that takes as an input a vector of valuation v, a vector

of budgets B and the supply level s and produces allocation x and payments π.
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