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ABSTRACT
Generalized Second Price Auction, also known as Ad Word
auction, and its variants have been the main mechanism
used by search companies to auction positions for sponsored
search links. In this paper we study the social welfare of the
Nash equilibria of this game under the Bayes-Nash solution
concept (i.e., in a partial information setting). In this model,
the value of each player for one click is drawn independently
from a distribution. Each player knows his own value but he
knows only the probability distribution of the other players
values. We compare the expected social welfare in a Bayes-
Nash equilibrium with the expected value of the optimal
social welfare. We obtain a bound of 8 for the Bayes-Nash
Price of Anarchy of GSP.

Our proof exhibits a combinatorial structure of Nash equi-
libria and use this structure to bound the price of anarchy.
Our proof of this structural property uses novel combinato-
rial techniques that can be of independent interest.

1. INTRODUCTION
Search engines and other online information sources use spon-
sored search auction, or AdWord auctions, to monetize their
services. These auctions allocate advertisement slots to com-
panies, and companies are charged per click, that is, they
are charged a fee for any user that clicks on the link associ-
ated with the advertisement. Since the introduction of the
model, there has been much work in the area, see the survey
of Lahaie et al [9].

Here we consider AdWords as a game played by advertisers
in bidding for an AdWord. The bids are used to deter-
mine both the assignment of bidders to slots, and also the
fees charged. The bidders are assigned to slots in order of
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bids, and the fee for each click is decided by variant of the
so-called Generalized Second Price Auction (GSP), a
simple generalization of the well-known Vickrey auction [15]
for a single item (or a single advertising slot). The Vick-
rey auction [15] for a single item makes truthful behavior
(when the advertisers reveal their true valuation) dominant
strategy, and make the resulting outcome maximize the so-
cial welfare. This truthful auction is extended to complex
scenarios by the Vickrey-Clarke-Groves Mechanism (VCG)
[3, 6] which also maximizes social welfare.

Generalized Second Price Auction, the mechanism adopted
by all search companies, is a simple and natural generaliza-
tion of the Vickrey auction for a single slot, but it is neither
truthful nor maximizes social welfare. In this paper we will
consider the social welfare of the GSP auction outcomes,
and prove that it is within a small constant factor of the
optimal.

We use a standard model of separable click-though rates:
where the probability of clicking on an advertisement j dis-
played in slot i is αiγj , i.e., the probability is a product of
two separable components: depending on the slot, and on
the advertiser respectively. To simplify the presentation, we
will focus on the case when γj = 1 for all j, that is, the
probability of a click depends only on the slot. It is easy to
extend our results to the model with separable click-through
rates by considering the product γjvj in place of the values
vj for each player j.

In the full information model, it is known that there ex-
ists Nash equilibria that are socially optimal [4, 14] in both
our simple model, and in the case of separable click-through
rates, i.e., that the price of stability is 1. It is not hard to
give simple examples of Nash equilibria where the social wel-
fare is arbitrarily smaller than the optimum. However, these
equilibria are unnatural, as some bid exceeds the players val-
uations. This implies that the player takes unnecessary risk,
as bidding above the valuation is a dominated strategy. We
define conservative bidders as bidders who won’t bid above
their valuations. Paes Leme and Tardos [10] proved a bound
of 1.618 to the Price of Anarchy for Pure Nash equilibria as-
suming that players are conservative.

In this paper, we consider the partial information setting of
a Bayesian game (see Harsanyi [7]). In that setting, players
have beliefs about other players valuations, i.e., that valua-
tions of different players are drawn from independent distri-



bution, and the players know only the probability distribu-
tion of their opponents, not the valuations. The Bayesian
setting models real AdWord Auctions better as players sub-
mit a single bid that will be used in many auctions with
different competitors (e.g., depending on the exact search
query), so players are, in fact, optimizing over a distribution
of other players. Gomes and Sweeney [5] study the Gener-
alized Second Price Auction in the Bayesian context. They
show that, unlike the full information case, there may not
exists socially optimal Nash equilibria in this model if the
click-through rates of different slots are sufficiently close.

Our results.The main result of this paper is a constant
Price of Anarchy bound for the Bayes-Nash equilibria for
the GSP game assuming player’s valuations are drawn from
independent (though not necessarily identical) distributions,
and bidders are conservative bidders. To motivate the con-
servative assumption, we observe that bidding above the
players valuation is dominated strategy also in the Bayesian
setting. We prove that the gap between the expectations of
the optimal and any Bayes-Nash equilibrium is at most a
factor of 8.

We exhibit a combinatorial structure of Bayes-Nash equi-
libria that can be of independent interest. To derive this
structural characterization we use novel combinatorial tech-
niques. We focus on a player i, and consider a set of multiple
deviations obtained by conditioning on the position of this
bidder in the optimal allocation. We show that these bids
are monotone in the position, use a novel dual averaging
technique to combine the Nash inequalities obtained for the
separate deviations.

Our results differ significantly from the existing work on
the price of anarchy in that many of the known results can
be summarized via a smoothness argument, as observed by
Roughgarden [12]. In contrast, we show that the GSP game
is not smooth in the sense of [12].

Related work.Sponsored search has been a very active
area of research in the last several years. See the survey of
Lahaie et al [9] for a general introduction. Here we use the
game theoretic model of the AdWord auctions of Edelman
et al [4] and Varian [14], for a truthful auction see Aggarwal
et all [1].

In the full information model, Edelman et al [4] and Varian
[14] show that the Price of Stability for this game is 1 in sepa-
rable click-through rates, that is, there exists Nash equilibria
that are socially optimal. More precisely, they consider a re-
stricted class of Nash equilibria called Envy-free Equilibria
or Symmetric Nash Equilibria, and show that such equilibria
exists, and all such equilibria are socially optimal. In this
class of equilibria, an advertiser wouldn’t be better off after
switching his bids with the advertiser just above him. Note
that this is a stronger requirement than Nash, as an ad-
vertiser cannot unilaterally switch to a position with higher
click-through-rates by simply increasing their bid. Edelman
et al [4] claim that if the bids eventually converge, they will
converge to an envy-free equilibrium, otherwise some adver-
tiser could increase his bid making the slot just above more

expensive and therefore making the advertiser occupying it
underbid him. They do not provide a formal game theoret-
ical model that selects such equilibria.

Gomes and Sweeney [5] study Generalized Second Price Auc-
tion in the Bayesian context. They show that, unlike the full
information case, there may not exists socially optimal Nash
equilibria in this model, and obtain sufficient conditions on
click-through rates that guarantee existence a symmetric
and socially optimal equilibrium. In [5], all the valuations
are drawn iid from the same distribution. In contrast, we
consider all equilibria (not only the symmetric ones), prove
bounds on the price of anarchy, and do not assume that the
players distributing are identical.

Lahaie [8] was the first to try to quantify the social efficiency
of an equilibrium in the worst case setting. He makes the
strong assumption that click-through-rate αi decays expo-
nentially along the slots with a factor of 1

δ
, and proves a

price of anarchy of min{ 1
δ
, 1 − 1

δ
}. Later, Paes Leme and

Tardos [10] give an 1.618 bound for the Price of Anarchy,
without any assumptions on the click-through-rate struc-
ture. Thompson and Leyton-Brown [13] study the efficiency
loss of equilibria empirically in various models.

In this paper, we assume that bidders are conservative, in the
sense that no bidder is bidding above their own valuation.
We can justify this assumption by noting that bidding above
his valuation is a dominated strategy. Lucier and Borodin
[11] and Christodoulou at al [2] also use the conservative as-
sumption to establish price-of-anarchy results in the context
of combinatorial auctions. Without any additional require-
ment Nash equilibria, even in the case of the single item
Vickrey auction, can have social welfare that is arbitrarily
bad compared to the optimal social welfare. However, we
show that Nash equilibria of conservative bidders is within
small constant factor of the optimum.

The paper by Lucier and Borodin [11] on greedy auctions
is also closely related to our work. They analyze the Price
of Anarchy of the auction game induced by Greedy Mech-
anisms. They consider a general combinatorial auction set-
ting: greedy algorithms with payments are computed us-
ing the critical price. They show via a type of smooth-
ness argument (see [12]) that of the greedy algorithm is a
c-approximation algorithm, then the Price of Anarchy of the
resulting mechanism is c+ 1 - for pure and mixed Nash and
for Bayes-Nash equilibria. The Generalized Second Price
mechanism is a type of greedy mechanism, but is not a com-
binatorial auction, and hence it does not fit the framework
of Lucier and Borodin. The key to proving the c+ 1 bound
of Lucier and Borodin [11] is to consider possible bids, such
as a single minded bid for the slot in the optimal solution, or
modifying a bit by changing it only on a single slot (the one
allocated in the optimal solution). The combinatorial auc-
tion framework allows such complex bids; in contrast, the
bids in GSP have limited expressivity, as a bid is a single
number, and hence bidders cannot make single-minded dec-
larations for a certain slot, or modify their bid only on one
of the slots. Many natural bidding languages have limited
expressivity (like the GSP game), as allowing arbitrary com-
plex bids typically makes the optimization problem hard.
However, the limited expressivity of the bidding language



can increase the set of Nash equilibria (as there are fewer
deviating bids to consider). It is important to understand
if such natural bidding languages result in greatly increased
price of anarchy.

2. PRELIMINARIES
We consider an auction with n advertisers and n slots (if
there are less slots than advertisers, consider additional vir-
tual slots with click-through-rate zero). We model this auc-
tion as a game with n players, where each advertiser is a
player. The types of the advertisers are given by their val-
uation vi, which expresses their value for one click. The
strategy for each advertiser is a bid bi ∈ [0,∞).

There are n slots and based on the bids, we decide where to
allocate each advertiser. In the most simple model, the k-th
slot contains αk clicks and αk is a monotone non-increasing
sequence, i.e., α1 ≥ α2 ≥ . . . ≥ αn. We prove our results for
this simple model, but they extend naturally to the more re-
alistic model of separable click-through-rates using the same
argument used in [10]. The game proceeds as follows:

1. each advertiser submits a bid bi ≥ 0, which is his de-
clared value for a click.

2. the advertiser are sorted by their bids (ties are broken
arbitrarily). Let π(k) denote the advertiser with the
k-th highest bid.

3. advertiser π(k) is placed on slot k and therefore re-
ceived αk clicks.

4. for each click, advertiser π(k) pays bπ(k+1), which is
the next highest bid, where we use the notation of
bπ(n+1) = 0.

The vector π is a permutation that indicates which adver-
tiser is assigned to each slot - it is completely determined
by the set of bids. We define the utility of a user i when
occupying slot j as given by ui(b) = αj(vi − bπ(j+1)). We
define the social welfare of this game as the total value
the bidders and the auctioneer get from playing it, which is:P
j αjvπ(j). In this paper we are concerned with bounding

the expected social welfare in an equilibrium of this game
relative to the optimal welfare.

We consider the partial information setting of Harsanyi [7]
where the players don’t know the valuations of other players,
only the distributions. We assume that the valuation vi are
drawn from independent (but not necessarily identical) dis-
tributions. A player chooses a bid (possibly in a randomized
fashion) based on his own valuation. Therefore, the strat-
egy of player i is a bidding function bi(vi) that associates
for each valuation vi a distribution of bids. A set of bidding
functions is said to be a Bayes-Nash equilibrium if:

E[ui(bi(vi), b−i(v−i))|vi] ≥ E[ui(b
′
i(vi), b−i(v−i)|vi],∀vi, b′i(vi)

where expectations are taken over values and randomness
used by players.

The Nash assignment π is a random variable, since it is
dependent on the bids, which are random. The optimal
allocation is also a random variable, and we define it by
ν: let ν(i) be the slot occupied by player i in the optimal

assignment. Therefore, ν is a random variable such that vi >
vj ⇒ ν(i) < ν(j). The optimal social welfare is thereforeP
j αν(j)vj . The quantity we want to bound is the Bayes-

Nash price of Anarchy given by the ratio:

Bayes-Nash PoA = E

"X
j

αν(j)vj

#
/E

"X
j

αjvπ(j)

#

Overbidding is a dominated strategy.Even in the full
information case (when the distributions over the valuations
are fixed), and even for just two bidders, the gap between
the best and the worse Nash equilibrium can be arbitrarily
large as shown in [10]. This difficult exists even in truthful
mechanisms, say the simple single-slot Vickrey auction: a
player with zero value can make a very large bid and a bidder
with high value bids zero and this is an equilibrium, even
though the high-bidding player is not gaining by doing that.
A way of overcoming it is by supposing that players do not
play dominated strategies. It is not hard to see that bidding
above the valuation is a dominated strategy.

Lemma 2.1. A bidding function bi(vi) in which P (bi(vi) >
vi) > 0 for some vi is dominated by playing b′i(vi) = min{vi, bi(vi)}.

We say a player is conservative if he doesn’t overbid, i.e.,
P (bi(vi) ≤ vi) = 1. We assume throughout the paper that
players are conservative. As stated by the lemma above,
this is a weaker assumption than that players don’t play
dominates strategies.

3. BAYES-NASH PRICE OF ANARCHY
We will use π and σ = π−1 to denote the permutation repre-
senting the allocation, and we will use ν to denote the ran-
dom permutation (defined by v) such that player i occupies
slot ν(i) in the optimal solution. The expected social welfare
is E[

P
i αivπ(i)] = E[

P
i ασ(i)vi] and the social optimum is

given by E[
P
i αν(i)vi]. The goal of this section is to bound

the price of anarchy, the ratio of these two expectations.

Theorem 3.1. If a set of bids b1, . . . , bn are a Bayes Nash
equilibrium in conservative strategies then:

E

"X
i

αivπ(i)

#
≥ 1

8
E

"X
i

αν(i)vi

#
in other words, GSP has a Bayes-Nash Price of Anarchy in
conservative strategies bounded by 8.

The proof of the theorem is based on a structural character-
ization analogous to the one used for Pure Nash equilibria
in [10], but much harder to prove. A special case of the
characterization of [10] (for j = σ(ν(i))) can be written as:

viασ(i) + αν(i)vπ(ν(i)) ≥ viαν(i). (1)

We prove the following Bayesian version of this inequality,
where all expectations are conditioned on the valuation vi
of player i, and are over the valuation of other players, and
the random choices made in bidding:



Lemma 3.2. If {bi(·)}i is a Bayes-Nash equilibrium of the
GSP game using conservative bids then:

viE[ασ(i)|vi] + E[αν(i)vπ(ν(i))|vi] ≥
1

4
viE[αν(i)|vi]

The price of anarchy bound follows easily from the lemma.

Proof of Theorem 3.1 :

SW =
1

2
E

X
i

(αivπ(i) + ασ(i)vi) =

=
1

2
E

X
i

(αν(i)vπ(ν(i)) + ασ(i)vi) =

=
1

2
E

"X
i

E[αν(i)vπ(ν(i))|vi] + viE[ασ(i)|vi]

#
≥

≥ 1

8
E

"X
i

viE[αν(i)|vi]

#
=

1

8
E

"X
i

viαν(i)

#
.

The hard part of the proof is proving Lemma 3.2. The main
difficulty in the Bayesian setting is that the inequality is
not established by a single deviating bid. The structural
inequality (1) for pure Nash in the full information setting
was obtained by considering a single deviation: player i bid-
ding just above bπ(ν(i)), the bid that is allocated the posi-
tion bidder i occupies in the optimum. By the conservative
assumption bπ(ν(i)) ≤ vπ(ν(i)), and then we get the claimed
inequality from the Nash property that the value of the devi-
ating bid αν(i)(vi−bπ(ν(i))) is no bigger than the Nash value
for player i which is at most viασ(i). We can get a similar
characterization for mixed Nash equilibria (loosing a factor
of 2) by considering the single bid just above 2Ebπ(ν(i)), as
by Markov’s inequality this value is above bπ(ν(i)) with prob-
ability at least 1/2. In contrast, in the Bayesian setting, we
obtain our structural result by considering deviations to dif-
ferent bids and then combining them using a novel averaging
argument.

To define the deviating bids, consider the following notation:
let πi(k) be the bidder occupying slot k in the case i didn’t
participate in the auction, i.e., πi(k) = π(k) if σ(i) > σ(k)
and πi(k) = π(k+1) otherwise. Note the following property
of πi(k)

Lemma 3.3. A deviating bid B by player i can get a slot
k or better if and only if B ≥ bπi(k).

To extend the bid 2Ebπ(ν(i)) to the Bayesian setting, we will
consider a sequence of bids, conditioned on the value of ν(i)
defined as

Bk = min{vi, 2E[bπi(k)|vi; ν(i) = k]}.

Notice that Bk is defined as a conditional expectation, so
it is a function of vi, and not a constant function. We will
drop the dependence on vi for notational convenience.

The proof of Lemma 3.2, depends on two combinatorial re-
sults. The first is a structural property: we claim that the

bids Bk as now defined are monotone in k for any fixed value
of vi. This will allows us to argue that bid Bk not only has
a good chance of taking slot k when ν(i) = k, but also has a
good chance of taking any other slot k′ > k when ν(i) = k′,
as Bk ≥ Bk′ .

Lemma 3.4. Given bidding functions bi, E[bπiν(i)|vi, ν(i) =
k] in non-increasing in k

We will prove the lemma above using flows and the max-flow
min-cut theorem. The value Bk is defined as a conditional
expectation assuming ν(i) = k, while Bk+1 is defined as a
conditional expectation assuming ν(i) = k + 1. To relate
the two expectations we define a flow of probabilities from
the probability space where ν(i) = k to the space where
ν(i) = k + 1 that transfers the mass of probability with the
property that the value bπiν(i) is non-increasing along the
flow lines. This will prove that Bk, the expectation of bπiν(i)

on the source side, is no bigger than Bk+1, the expectation
of the same value on the sink side.

To be able to combine the inequalities we get by a consid-
ering the different bids Bk we use a novel ”dual averaging
argument”, finding an average that will simultaneously guar-
antee that one average is not too low, and a different average
is not to high. We combine the bids Bk via a probability
distribution x (bidding Bk with probability xk). The two
inequalities of the lemma will guarantee that the resulting
randomized bid on one hand, gets a high enough number of
clicks, and on the other hand, the resulting payment is not
too large. We expect that this Lemma 3.5, which we prove
using linear programming duality, can have other applica-
tions.

Lemma 3.5. Given any positive values γk and Bk There
are xk ≥ 0,

P
k xk = 1 such that:X

k

xk

nX
j=k

γj ≥
1

2

nX
j=1

γj

X
k

xkBk

nX
j=k

γj ≤
nX
j=1

γjBj

Before we prove these key lemmas, we show how to use them
for proving the main Lemma 3.2:

Proof of Lemma 3.2 : As outlined above we will consider
n deviation for player i at bids Bk for all possible slots k.
Since b is a Nash equilibrium, a player i cannot benefit from
changing his/her strategy, each alternative bid will give us
an inequality on the utility. We will use Lemma 3.5 to
average them to get the claimed inequality.

Consider bidder i deviates toBk = min{vi, 2E[bπi(k)|vi; ν(i) =

k]}. Let α′k be the random variable that means the click-
through-rate of the slot he occupies by bidding Bk. First
we estimate the probability that by bidding Bk the player
gets the slot k or better when ν(i) = k. In the case Bk = vi
this is trivially guaranteed, as only ν(i) − 1 players have



values above vi and only these players can bid above vi. If
Bk = 2E[bπik|vi; ν(i) = k], we use Lemma 3.3, and Markov’s
Inequality to get:

P (α′k ≥ αk|vi, ν(i) = k) = P (Bk ≥ bπi(k)|vi, ν(i) = k) ≥ 1

2
.

Let pj = P (ν(i) = j|vi). Recall that by Lemma 3.4 we have
that B1 ≥ B2 ≥ . . . ≥ Bn, and hence the probability of bid
Bk taking a slot j or better when ν(i) = j is also at least
1/2 whenever j ≥ k. The expected value of bidding Bk is
at least E[α′k(vi − Bk)|vi], and the value for player i in the
current solution is at most viE[ασ(i)|vi]. Using the above
bound, this leads to the following inequality.

viE[ασ(i)|vi] ≥ E[α′k(vi −Bk)|vi] =

=
X
j

pjE[α′k(vi −Bk)|vi, ν(i) = j] ≥

≥
X
j≥k

1

2
pjαj(vi −Bk).

Now, we use the Lemma 3.5 applied with Bk and γk = pkαk.
We can interpret xk from the lemma as probabilities, and
consider the deviating strategy of bidding Bk with probabil-
ity xk.

Combining the above inequalities with the coefficients xk
from the Lemma, we get:

viE[ασ(i)|vi] ≥
X
k

xk
X
j≥k

1

2
pjαj(vi −Bk) ≥

≥ 1

4
vi

X
j

αjpj −
1

2

X
j

pjαjBj ≥

≥ 1

4
viE[αν(i)|vi]− E[αν(i)bπi(ν(i))|vi].

To get the claimed inequality, just notice that bπi(k) ≤
bπ(k) ≤ vπ(k).

3.1 Proving that bidsBk are non-increasing
We will prove Lemma 3.4 in several steps. First we prove
bounds assuming all but a single player has a deterministic
value, and we take expectations to get a conditional version.
We use these to define a probability flow from the probability
space where ν(i) = k to the space where ν(i) = k + 1 so
that the value bπiν(i) is non-increasing along the flow lines.
In transferring the probability pass we take advantage of
the fact that the valuations are drawn from independent
distributions.

Proof of Lemma 3.4 : We want to prove that:

E[bπi(k)|vi, ν(i) = k] ≥ E[bπi(k+1)|vi, ν(i) = k + 1]

The value vi is in position k in the optimum if exactly n−k
values are below vi. Consider such a set S of agents, i /∈ S,
and the corresponding event:

AS = {vj ≤ vi;∀j ∈ S, vj > vi;∀j /∈ S}

The event ν(i) = k can now be stated as ∪|S|=n−kAS , and
so what we are trying to prove is:

E[bπi(k)|vi,∪|S|=n−kAS ] ≥ E[bπi(k+1)|vi,∪|S′|=n−k−1AS′ ]

Take a pair of sets S′ ⊆ S, i.e., S = S′ ∪ {t} for some agent
t 6= i. The first claim is that:

Claim 3.6. For a set S′, and S = S′ ∪ {t} for t 6= i

E[bπi(k)|vi, AS ] ≥ E[bπi(k+1)|vi, AS′ ]

Proof. To see this notice that:

E[bπi(k)|vi, AS , {vj}j 6=i,t] ≥ E[bπi(k+1)|vi, AS′ , {vj}j 6=i,t]

The conditioning on the two sides differs only by the value
of bidder t. In identical conditioning the bid of position k is
clearly higher than the bid of position k + 1, and by letting
one bidder (bidder t) change, we can’t violate the above
inequality. Taking the expectation over {vj}j 6=i,t we get the
inequality of Claim 3.6.

To finish the proof of Lemma 3.4, we would like to add the
inequalities for different set pairs (S, S′). The next combi-
natorial lemma states that if the values vi are drawn from
independent distributions, then there is a “probability flow”
λS,S′ that transfers the probability mass from ∪|S|=n−kAS
to ∪|S′|=n−k−1AS′ along the pairs S′ ⊆ S. More formally,
we need to show that there are coefficients λS,S′ ≥ 0 for
S′ ⊆ S such that:X

S

λS,S′ = P (AS′ |vi,∪|S′|=n−k−1AS′)

X
S′

λS,S′ = P (AS |vi,∪|S|=n−kAS)

Taking the a linear combination of the inequalities (3.6) for
set pair (S, S′) with coefficients λS,S′ lets the bound claimed
by Lemma 3.4.

Lemma 3.7. If valuations are drawn from independent dis-
tributions, there exists a probability flow λS,S′ ≥ 0 for set
pairs S′ ⊆ S with |S′| = n− k− 1 and |S| = n− k such that
the equations above hold.

Proof. We will use the max-flow min-cut theorem to
prove that the λS,S′ values exist. We characterize the prob-
abilities P (AS |vi,∪|T |=n−kAT ) using the independence as-
sumption. Let qj = P (vj ≥ vi), then we can write:

P (AS |vi,∪|T |=n−kAT ) =

Q
j∈S qj

Q
j /∈S+i(1− qj)P

|T |=n−k
Q
j∈T qj

Q
j /∈T+i(1− qj)

If we define φj =
qj

1−qj
and φ(S) =

Q
j∈S φj then we can

rewrite:

P (AS |vi,∪|T |=n−kAT ) =
φ(S)P

|T |=n−k φ(T )
.

The existence of the λS,S′ is equivalent to the existence a
flow of value 1 in the following network: consider a bipartite



graph where the left nodes are sources corresponding to sets

S′ of size |S′| = n−k−1 with supply φ(S′)P
T ′ φ(T ′) and the right

nodes are sinks corresponding to sets S of size |S| = n−k−1

with demand φ(S)P
T φ(T )

, where the sums are over sets T ′ of size

n− k and sets T of size n− k respectively. We add an edge
(S′, S) if S′ ⊆ S with capacity∞. We need to prove that the
max-flow in this graph has flow value 1 (and then the flow
values define λS′,S). We use the min-cut/max-flow theorem
(in this case, this is a weighted version of Hall’s Theorem):
there is a flow of size 1 if and only if for each collection of
sets A′

1, . . . , A
′
p of size n − k − 1, the total supply, the flow

that needs to leave the set, is at most as big as the demand
that is available at the neighbors of the set:

pX
i=1

φ(A′
i)P

S′ φ(S′)
≤

X
A′

i⊆A,|A|=n−k

φ(A)P
S φ(S)

which can be rewritten as:

X
S

φ(S) ·
X
i

φ(A′
i) ≤

X
A′

i⊆A,|A|=n−k

φ(A) ·
X
S′

φ(S′)

Notice that both sides have sums of products of 2(n−k)−1
terms of type φj . If we can prove that all terms in the LHS
appear in the RHS with the at least same multiplicity we are
done. We prove it based on a combinatorial construction.

The left hand side consists of products of φ values for pairs
of sets (S,A′

i). The right hand side contains the products of
φ values for pairs (S − j, A′

i + j) for j ∈ S \A′
i. We want to

map each pair (S,A′
i) to (S − j, A′

i + j) without collisions.
If we can do this, it proves the claim. We say the pairs
(S1, A′

i) and (S2, A′
j) are equivalent if S1 ∪ Ai and S2 ∪ Aj

are the same (including multiplicities of the elements). Now,
just need to map each equivalence class of elements in a
collision-free manner. The Lemma 3.8 below shows that
the following construction satisfies the property: take t =
1
2
(|S ∪A′

i| − |S ∩A′
i| − 1), identify (S ∪A′

i) \ (S ∩A′
i) with

[2t+ 1] and choose j = ft(A
′
i \ S) \A′

i.

Lemma 3.8. For all t, then there is a bijective function
ft :

`
[2t+1]
t

´
→

`
[2t+1]
t+1

´
such that S ⊆ ft(S), where [n] =

{1, . . . , n} and
`
S
t

´
= {T ⊆ S; |T | = t}.

Proof. Consider a bipartite graph where the left nodes
are

`
[2t+1]
t

´
and the right nodes are

`
[2t+1]
t+1

´
and there is an

(A,B) edge if A ⊆ B. Notice this is a regular k + 1-graph.
Since all regular bipartite graphs have perfect matchings,
the claim is proved.

3.2 Proving the dual averaging Lemma

Proof of Lemma 3.5 : We want to prove that the fol-
lowing linear programming problem is feasible:

max 0 s.t.

−
X
k

xk

nX
j=k

γj ≤ −1

2

nX
j=1

γj

X
k

xkBk

nX
j=k

γj ≤
nX
j=1

γjBjX
k

xk = 1

xk ≥ 0

Verifying that this program is feasible is the same as verify-
ing that the dual is feasible and bounded. The dual is:

min−φ1

2

nX
j=1

γj + ψ

nX
j=1

γjBj + ξ s.t.

− φ

0@ nX
j=k

γj

1A + ψBk

0@ nX
j=k

γj

1A + ξ ≥ 0, ∀k

φ, ψ ≥ 0

This linear problem has a solution for any φ, ψ ≥ 0 by setting
ξ sufficiently high. So the linear program is the same as the
following optimization problem:

min
φ,ψ≥0

−φ1

2

nX
j=1

γj+ψ

nX
j=1

γjBj+max
k

240@ nX
j=k

γj

1A (φ− ψBk)
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Our goal is to prove that for any fixed γk, Bk ≥ 0, for any
values of φ, ψ ≥ 0 this is a non-negative expression, and
establishing that its bounded. We claim that for some value
of k, the following must be non-negative:

−φ1

2

nX
j=1

γj + ψ

nX
j=1

γjBj +

0@ nX
j=k

γj

1A (φ− ψBk)

We will show this by summing the above expressions weighted
by γk, and showing that the result is non-negative. There-
fore, at least one of the summands must be non-negative.
The sum is

X
k

γk

24−φ1

2

nX
j=1

γj + ψ

nX
j=1

γjBj +

0@ nX
j=k

γj

1A (φ− ψBk)

35 .
And this expression is non-negative, as φ is multiplied byP
k

P
j≥k γjγk −

1
2

P
k

P
j γjγk which is ≥ 0 and ψ is mul-

tiplied by
P
k

P
j γkγjBj −

P
k

P
j≥k γjγkBk, which is also

≥ 0.

4. GSP IS NOT A SMOOTH GAME
As Roughgarden points out in [12], most of the games stud-
ied so far (as congestion games, facility location, valid util-
ity games, etc) have their Price of Anarchy proof based on



a smoothness argument. In this section we note that this
proof is essentially different from all previous Price of Anar-
chy analysis as the GSP game is not smooth.

A game is said to be (λ, µ)-smooth if the following property
holds: X

i

ui(s
∗
i , s−i) ≥ λSW (s∗)− µSW (s)

for all possible strategies s, s∗, where ui are utilities of each
player and SW is the social welfare function which is given
by SW =

P
i ui. To model GSP as one of this games, we

consider a game of n + 1 players - the n advertisers and
the search engine. Each advertiser has one value vi and
its strategies are bids in [0, vi], still supposing them conser-
vative. The search engine has only one strategy, which is
”run GSP”, and its utility are the payments it receives. The
search engine is clearly not really playing the game, it is just
there to make the social welfare the sum of the utilities. The
following theorem shows that GSP is not a smooth game:

Theorem 4.1. Conservative GSP is not (λ, µ)-smooth for
any parameters λ, µ.

Proof. Consider the game with 2 slots with click-through-
rates 1 and α and two advertisers with values 1 and v. Let
s = (b1, b2) and s∗ = (b3, b4) where 1 > v > b2 > b3 >
b4 > b1. For this case, the expression

P
i ui(s

∗
i , s−i) ≥

λSW (s∗)− µSW (s) becomes:

b1 + α(1− 0) + 1(v − b1) ≥ λ(1 + αv)− µ(v + α)

Simplifying we get:

(1 + µ)(α+ v) ≥ λ(1 + αv)

Since α and v are parameters, for any λ, µ, we can make
them arbitrarily small violating the inequality for any λ > 0,
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