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ABSTRACT
Generalized Second Price Auction and its variants has been
the main mechanism used by search companies to auction
positions for sponsored search links. In this paper we study
the social welfare of the Nash equilibria of this game. It is
known that socially optimal Nash equilibria exists, and its
not hard to see that in the general case there are also very
bad equilibria: the gap between a Nash equilibrium and the
socially optimal can be arbitrarily large. In this paper, we
consider the case when the bidders are conservative, in the
sense that they do not bid above their own valuations. We
show that a certain analog of the trembling hand equilibria
are equilibria with conservative bidders. Our main result is
to show that for conservative bidders the worse Nash equi-
librium and the social optimum are within a factor of the
golden ratio, 1.618.
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Game Theory, Keyword Auctions

1. INTRODUCTION
Search engines and other online information sources use spon-
sored search auction to monetize their services. These ac-
tions allocate advertisement slots to companies, and compa-
nies are charged pay per click, that is, they are charged a
fee for any user that clicks on the link associated with the
advertisement. The fee for such a click is decided by vari-
ant of the so-called Generalized Second Price Auction
(GSP), a simple generalization of the well-known Vickrey
auction [10] for a single item (or a single advertising slot).
The Vickrey auction [10] for a single item, and its gener-
alization, the Vickrey-Clarke-Groves Mechanism (VCG) [2,
5], make truthful behavior (when the advertisers reveal their
true valuation) dominant strategy, and make the resulting
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outcome maximize the social welfare. See also [1] about
truthful sponsored search auctions.

Generalized Second Price Auction, the mechanism adopted
by all search companies, is a natural generalization of the
Vickrey auction for a single slot, but it is neither truthful
nor maximizes social welfare. In this paper we will consider
the social welfare of the GSP auction outcomes. Our goal
in this paper is to show that the intuition based on the
similarity of GSP to the truthful Vickrey auction is not so
far from truth: we prove that the social welfare is within a
factor of 1.618 of the optimal in any Nash equilibrium for
conservative bidders.

We consider the full information game, assuming all adver-
tisers know the valuations of all players. In addition, we will
assume that the players are conservative, and do not risk
bidding above their valuation. A bid value bi above the val-
uation vi for a player i, opens the player up to the risk of an
outcome with negative utility (if another bidder b∗ appears
in the range vi < b∗ < bi). To formally justify our conserva-
tive bidder model, we assume that an additional random bid
will show up with a small ǫ probability, and study the Nash
equilibria of the game for the original bidders as ǫ tends to
zero. This is analogous to the traditional notion of trembling
hand equilibrium [8]. We’ll show that in the Nash equilibria
of the game that survive this perturbation all bidders are
conservative.

Our results. Our focus in this work is to analyze the social
welfare in the Generalized Second Price Auction mechanism.
We start by considering the simple model when click-though
rates depend only on the slots, i.e., the probability of click
for all bidders if assigned to slot i is αi. At the end of the
paper, we extend our results to the model with separable
click-through rate, where if advertiser j is assigned to slot i
the probability of this resulting in a click is γjαi. It is known
that there are Nash equilibria that are socially optimal. We
show simple examples of Nash equilibria where the social
welfare is arbitrarily smaller than the optimum. However,
these equilibria are unnatural, as some bid exceeds the play-
ers valuations, and hence the player takes unnecessary risk
by playing above their own valuation if a new bidder shows
up between their bid and valuation. We define conservative
bidders as bidders who won’t bid above their valuations.

Our main contribution is to prove that if all bidder are con-



servative, then the social welfare in a Nash equilibrium can’t
be very far from the optimal. To analyze the Nash equi-
librium when all advertisers are conservative, we exhibit a
simple property of those equilibria: consider two slots i and
j, and let vk denote the valuation of advertiser k for a click.
We show that if in a Nash equilibrium with conservative bid-
ders, π(i) and π(j) are assigned to these slots respectively,
than we must have that

αj

αi

+
vπ(i)

vπ(j)
≥ 1.

We say that as assignment of bidders to slots is weakly fea-
sible if it satisfies the above inequality for all i and j, and we
show that the social welfare of a weakly feasible assignment
is at least a 1.618 fraction of the socially optimal assign-
ment. Although only a necessary condition, weak feasibility
is a simple and intuitive property. It is not hard to see that
weakly feasible assignments cannot be too far from the opti-
mal: if two advertisers are assigned to positions not in their
order of bids, then either (i) the two advertisers have similar
values for a click; or (ii) the click-through rates of the two
slots are not very different, and hence in either case their
relative order doesn’t affect the social welfare very much.

Related work. Sponsored search has been a very active
area of research in the last several years. For the basic
model of Nash equilibria in such auctions see the papers
by Edelman et al [3] and Varian [9], for a truthful auction
see Aggarwal et all [1], and see the survey of Lahaie et al [7]
for a general introduction. Since the original models, there
has been much work in the area, exploring more complex
models of click-through rates, taking into account budgets,
analyzing dynamics, considering more complex models of
incentives (such as vindictive bidding), etc. A lot of this
work have been reported in the first four Workshops on Ad
Auctions 2005 through 2008. Closest to our work is the
paper Lahaie [6], that provides price of anarchy bounds on
efficiency of equilibria, provided that the click-through-rate
decays exponentially along the slots with a factor of δ.

Here we consider the simpler models of either click-through
rates αi that is a property of slot i independent of the ad-
vertiser, or separable click though rates, where the click
through rate for bidder j in slot i can be expressed in a
simple product form γjαi. For these models Edelman et
al [3] and Varian [9] show that there exists Nash equilibria
that are socially optimal. More precisely, they consider a
restricted class of Nash equilibria called Envy-free equilibria
or Symmetric Nash Equilibria, and show that such equilibria
exists, and all such equilibria are socially optimal. In this
class of equilibria, an advertiser wouldn’t be better off after
switching his bids with the advertiser just above him. Note
that this is a stronger requirement than Nash, as an ad-
vertiser cannot unilaterally switch to a position with higher
click-through by simply increasing their bid. Edelman et
al [3] claim that if the bids eventually converge, they will
converge to an envy-free equilibrium, otherwise some adver-
tiser could increase his bid making the slot just above more
expensive and therefore making the advertiser occupying it
underbid him. They do not provide a formal game model
that selects such equilibria. Vorobeychik and Reeves [11]
use simulation to study stable equilibria.

Lahaie [6] also considers the problem of quantifying the so-
cial efficiency of an equilibrium. He proves a price of anarchy
of min{ 1

δ
, 1− 1

δ
} provided that the click-through-rate decays

exponentially along the slots with a factor of 1
δ
. Feng et al [4]

gives experimental evidence that click-through-rates decay
exponentially. To prove the claimed bound, Lahaie develops
a tool which is similar to ours. He proves π is a feasible
allocation if and only if

vπ(i)

vπ(j)
+

αj

αi+1
≥ 1 for 1 ≤ i ≤ n − 2

and j ≥ i + 2.

In this paper, we consider a different restriction of Nash, we
assume that bidders are conservative, in the sense that no
bidder is bidding above their own valuation. We can jus-
tify this assumption by assuming that a new random bids
can show up with a vanishingly small probability ǫ → 0. In
equilibria that survive this perturbation, the bidders are con-
servative. Without any additional requirement Nash equi-
libria can have social welfare that is arbitrarily bad com-
pared to the optimal social welfare. However, we show that

Nash equilibria of conservative bidders is within a 1+
√

5
2

≈
1.618 factor to the optimum. We assume only that the
click-through-rates are separable (the product form) and are
monotone.

2. PRELIMINARIES
We consider an auction with n advertisers and n slots (if
there are less slots than advertisers, consider additional vir-
tual slots with click-through-rate zero). Let vi be the value
that advertiser i has for one click and αj be the click-through-
rate of slot j. We will extend the results to separable click-
through-rate at the end of the paper.

Assume that advertisers and slots ordered so that v1 ≥ v2 ≥
... ≥ vn and α1 ≥ α2 ≥ ... ≥ αn. Given those parameters of
the model, the mechanism of the Generalized Second Price
Auction (GSP) is:

1. each advertiser submits a bid bi ≥ 0

2. the advertiser are sorted by their bids (ties are broken
arbitrarily)

3. the highest slot is assigned to the advertiser with high-
est bid, the second highest slot to the one with second
highest bid and so on.

4. the advertiser occupying slot i pays the bid of the ad-
vertiser occupying slot i+1. The advertiser occupying
the last slot pays zero.

Let Sn be the set of permutations of n elements. We char-
acterize the order of the advertisers in the slots using a per-
mutation π so that π(i) is the advertiser occupying slot i,
which is the same of the advertiser with the ith highest bid.

We define the utility of a user i when occupying slot j as
given by ui = αj(vi − bπ(j+1)). Given a set of bids b1, ..., bn

we say that they constitute a Nash equilibrium if no ad-
vertiser can increase its own utility by changing his own bid.
Suppose advertiser i is currently bidding bi and occupying
slot j. Changing his bid to something between bπ(j−1) and
bπ(j+1) won’t change the permutation π and therefore won’t



change the allocation nor his payment. So, he could try to
increase his valuation by doing one of two things:

• increasing his bid to get a slot with a better click-
through-rate. If he wants to get a slot k < j he needs
to overbid advertiser π(k), say by bidding bπ(k) + ǫ.
This way he would get slot k for the price bπ(k) per
click, getting utility αk(vi − bπ(k)).

• decreasing his bid to get a worse but cheaper slot. If he
wants to get slot k > j he needs to bid below advertiser
π(k). This way he would get slot k for the price bπ(k+1)

per click, getting utility αk(vi − bπ(k+1)).

Therefore we say that b is a Nash equilibrium if the following
equations hold:

bπ(1) ≥ bπ(2) ≥ ... ≥ bπ(n)

αi(vπ(i) − bπ(i+1)) ≥ αj(vπ(i) − bπ(j)) ∀j < i

αi(vπ(i) − bπ(i+1)) ≥ αj(vπ(i) − bπ(j+1)) ∀j > i

(1)

where π is the permutation defined by b. We say that π is a
feasible permutation for α, v if there is a b that generates
π and is a Nash equilibrium.

We measure the total quality of an equilibrium by the social

welfare, which is defined as
P

j αjvπ(j). The optimal social
welfare is naturally achieved when π is the identity permu-
tation and [3] proves that there is always a Nash equilibrium
that achieves that (in particular, allocation and payments in
this equilibrium are equal to VCG). However not every Nash
equilibrium is optimal, as we will see shortly. We are inter-
ested in quantifying the price of anarchy for this game,
which is given by the maximum over all permutations that
define Nash equilibria of

P

j αjvj/
P

j αjvπ(j).

2.1 Equilibria with Low Social Welfare
Even for two slots the gap between the best and the worse
Nash equilibrium can be arbitrarily large. For example, con-
sider two slots with click-through-rates α1 = 1 and α2 = r
and two advertisers with valuations v1 = 1 and v2 = 0. It
is easy to check that the bids b1 = 0 and b2 = 1 − r are
a Nash equilibrium where advertiser 1 gets the second slot
and advertiser 2 gets the first slot. The social welfare in this
equilibrium is r while the optimal is 1. The price of anar-
chy is therefore 1/r. Since r can be any number from 0 to
1, the gap between the optimal and the worse Nash can be
arbitrarily large.

Notice however that this Nash equilibrium seems very arti-
ficial: advertiser 2 is exposed to the risk of negative utility:
if advertiser 1 (or another advertiser) adds a bid somewhere
between 0 and 1−r this imposes a negative utility on adver-
tiser 2. Bidding 1 − r while having valuation 0 is accepting
a lot of risk. We claim that if bidders are not willing to
accept such risk (or accepts only a limited amount of such
risk) then the price of anarchy is bounded.

3. CONSERVATIVE BIDDER EQUILIBRIA
We say an advertiser i is γ-conservative if bi ≤ 1

γ
vi. So,

generic advertisers are 0-conservative. We call conservative
bidders the 1-conservative advertisers.

Note that if bidder i has to pay a price above vi she has
negative utility, and hence this cannot happen in a Nash
equilibrium. A non-conservative bid bi > vi can only be
part of a Nash equilibrium if the resulting price pi (the next
smallest bid) is small enough vi ≥ pi. In this case all bids
b′i in the range (pi, bi] of user i result in the same outcome,
and same payments, hence same utility. Now consider how
the outcome and utility is effected if a new bid b∗ is added
to the system. If vi < b∗ < bi then user i remains to be
assigned to the same slot, but will pay a rate b∗ resulting
in negative utility. In contrast, by bidding b′i = vi bidder
i does not effect its utility in the original game, and avoids
the danger of negative utility when the bid b∗ is added.

Given the parameters α, v, we say that b is a conservative

bidder equilibrium if it is a Nash equilibrium and bi ≤ vi

for all bidders i.

Theorem 1. A Nash equilibrium that remains an equilib-
rium in the game when a random bid is added with a small
probability ǫ > 0 is a conservative bidder equilibrium, and
conservative bidder equilibria exists.

Proof. We argued above that Nash equilibria that sur-
vive a small enough perturbation are conservative bidder
equilibria. To see that conservative bidder equilibria exist
we use the equilibria of Edelman et al [3], where b1 = v1

and bi = 1
αi−1

P

j≥i−1(αj − αj+1)vj+1 for i > 1 is clearly

conservative.

For the remainder of the paper we consider conservative
equilibria.

Theorem 2. For 2 slots, if all advertisers are γ-conservative,

then the price of anarchy is bounded by 1+γr(1−r)
γ+r(1−γ)

, where

r = α2
α1

In particular, taking γ = 0 we recover the 1/r bound for
the general case and for γ = 1 we have a quadratic function
with maximum equal to 1.25. It is not hard to see that this
bound is limited for any γ > 0.

Proof. We can suppose without loss of generality that
α1 = 1, α2 = r and α1v1+α2v2 = 1, since what we are trying
to prove is invariant under rescaling α or v. In any non-
optimal Nash equilibrium b1 ≤ b2 and by the Nash condition
r(v1 − 0) ≥ 1(v1 − b2) and by the conservative condition
b2γ ≤ v2. Substituting v1 = 1−rv2 in those two expressions
and combining them to eliminate the b2 term we get:

v2 ≥ 1 − r
1
γ
− r(r − 1)

(2)

Therefore the social welfare in any non-optimal Nash is α1v2+

α2v1 = 1v2 + r(1 − rv2) ≥ 1+γr(1−r)
γ+r(1−γ)

.



3.1 Weakly Feasible Assignments
Next we show that equilibria with conservative bidders sat-
isfies the simple property mentioned in the introduction. We
will call the assignments satisfying this property weakly fea-
sible. In the next section we analyze the welfare properties
of weakly feasible equilibria.

We start by showing that an assignment when no bidder i
can increase its utility unless he bids above his valuation
is in fact a Nash equilibrium in the usual sense (equations
1) in which bi ≤ vi. For this equilibrium we still have the
relations for j > i as in equation 1 but for j < i, now we
have:

αj(vπ(i) − bπ(j)) > αi(vπ(i) − bπ(i+1)) ⇒ bπ(j) > vπ(i)

that is equivalent to:

vπ(i) − bπ(j) ≤
αi

αj

(vπ(i) − bπ(i+1)) or vπ(i) − bπ(j) < 0

and we can rewrite it as:

vπ(i) − bπ(j) ≤ max



αi

αj

(vπ(i) − bπ(i+1)), 0

ff

=
αi

αj

(vπ(i) − bπ(i+1))

since vπ(i) ≥ bπ(i) ≥ bπ(i+1). So it is a Nash equilibrium
in the standard sense with the additional constraints that
bi ≤ vi.

The equations 1 are not very easy to work with, since they
are not very symmetric and they depend on b. We propose a
cleaner form of representing an equilibrium that just uses α,
v and the permutation π. Although it is a weaker property
it still captures most of the trade-offs:

1. if values vi are very close then the order of the bidders
doesn’t influence the social welfare that much

2. if values vi are very well separated, then permutations
that would produce a bad social welfare are not feasible
because they violate Nash constraints

Theorem 3. Given v, α and a Nash permutation π, if
i < j and π(i) > π(j) then:

αj

αi

+
vπ(i)

vπ(j)

≥ 1 (3)

in particular,
αj

αi
≥ 1

2
or

vπ(i)

vπ(j)
≥ 1

2
.

Proof. Since it is a Nash equilibrium bidder in slot j is
happy with his condition and don’t want to increase his bid
to take slot i, so:

αj(vπ(j) − bπ(j+1)) ≥ αi(vπ(j) − bπ(i))

since bπ(j+1) ≥ 0 and bπ(i) ≤ vπ(i) then:

αjvπ(j) ≥ αi(vπ(j) − vπ(i))

Inspired by the last theorem, given parameters α, v we say
that permutation π is weakly feasible if equation 3 holds for
each i < j, π(i) > π(j). From Theorem 2 we know that:

Corollary 4. Given α, v, any permutation correspond-
ing to a Nash equilibrium with conservative bids is weakly
feasible.

Our main results follow from analyzing the price of anarchy
ratio

P

j αjvj/
P

j αjvπ(j) over all weakly feasible permuta-
tions π. Before proceeding to the main result. we re-prove
the bound in [6] for the conservative case.

Theorem 5. If αi

αi+1
≥ δ > 1 for all i, then if π is a

weakly feasible permutation, then the price of anarchy is
bounded by 1 − 1

δ
, i.e.:

X

i

αivπ(i) ≥ (1 − δ−1)
X

i

αivi

Proof. If π(i) > i then there is some j > i such that
π(j) ≤ i (by the pigeonhole principle, since there are only
i−1 slots with index < i, so at least one of the first i bidders
must occupy one slot after i). So, as π(j) ≤ i < π(i) and
j > i we can apply our relation:

vπ(i) ≥
„

1 − αj

αi

«

vπ(j) ≥
„

1 − αj

αi

«

vi ≥ (1 − δ−1)vi

where the first inequality is that of Theorem 3. The theorem
follows almost directly:

X

i

αivπ(i) =
X

π(i)≤i

αivπ(i) +
X

π(i)>i

αivπ(i)

≥
X

π(i)≤i

αivi +
X

π(i)>i

αivi(1 − δ−1)

≥ (1 − δ−1)
X

i

αivi

3.2 The Main Results
Here we present the bound on the price of anarchy for weakly
feasible permutations, and hence for GSP for conservative
bidders. Our main result is that it is bounded by 1.618. As
a warm-up we will prove that it is bounded by 2, since the
proof is easier and captures the main ideas. We will prove
this bound for weakly feasible permutations and it will auto-
matically be deduced to a bound for feasible permutations.
Notice that the weakly feasible permutation nicely capture
the fact that if advertisers i and j are in the ”wrong rela-
tive position” (i.e. different to the one in the optimal) then
either their values are close (within a factor of 2) or their
click-through-rates are close (within a factor of 2).

Theorem 6. For conservative bidders, the price of anar-
chy for GSP is bounded by 2.

Proof. We will prove it by induction on n that all weakly
feasible permutations result in social welfare at most of fac-
tor of 2 less than the maximum possible. For 2 advertisers
and 2 slots we know that the worst possible social welfare for
a weakly feasible permutation is at most a 1.25 fraction of



... ...
1
β

+
1
γ
≥ 1

i

j

1 1

bidders slots

γ
β

Figure 1: Allocation of slots in the proof of Theo-

rems 5 and 6

the optimum. So, now we need to prove the inductive step.
Consider parameters v, α and a weakly feasible permutation
π. Let i = π−1(1) be the slot occupied by the advertiser of
higher value and j = π(1) be the advertiser occupying the
first slot (as shown in Figure 1). If i = j = 1 then we can
apply the inductive hypothesis right away. If not, equation
3 tells us that: αi

α1
≥ 1

2
or

vj

v1
≥ 1

2
. Suppose αi

α1
≥ 1

2
and

consider an input with slot i and advertiser 1 deleted. This
input has n − 1 advertisers and n − 1 slots and the permu-
tation π restricted to those is still weakly feasible, so by the
inductive hypothesis:

X

k 6=i

αkvπ(k) ≥
1

2
(α1v2 + ... + αi−1vi + αi+1vi+1 + ... + αnvn)

≥ 1

2
(α2v2 + ... + αivi + αi+1vi+1 + ... + αnvn)

therefore:
X

k

αkvπ(k) = αiv1 +
X

k 6=i

αkvπ(k) ≥
1

2
α1v1 +

1

2

X

k>1

αkvk

If
vj

v1
≥ 1

2
we just do the same but deleting slot 1 and ad-

vertiser j from the input.

Now, we prove the tighter result.

Theorem 7. For conservative bidders, the price of anar-

chy is bounded by 1+
√

5
2

≈ 1.618.

Proof. As before, we prove the conclusion for all weakly
feasible permutations. We use here a dynamical systems
argument: we define a sequence of values rk so that we can
prove that for k slots social welfare is at least an rk fraction
of the optimum, and prove that rk converges to the desired
bound. Let r2 = 1.25 and suppose we have r2, r3, ..., rn−1

and that this property holds for them. Let’s calculate some
”small” value of rn so that the property still holds.

Again, consider parameter α, v, a weakly feasible permuta-
tion π and let’s assume i = π−1(1) and j = π(1) (as shown
in Figure 1). If i = j = 1, this is an easy case and it is
straightforward to see that in this case the price of anarchy
can be bounded by rn−1. If not, assume without loss of gen-
erality that i ≤ j (since equation 3 is symmetric in α and

v we can just interchange the roles of them in the proof if
i > j). Let β = α1

αi
and γ = v1

vj
. We know that 1

β
+ 1

γ
≥ 1.

Following the lines of the proof of the last theorem we have:

X

k

αkvπ(k) = αiv1 +
X

k 6=i

αkvπ(k) ≥

≥ 1

β
α1v1 +

1

rn−1

 

i
X

k=2

αk−1vk +
n
X

k=i+1

αkvk

!

≥

=
1

β
α1v1 +

1

rn−1

"

i
X

k=2

(αk−1 − αk)vk +
X

k>1

αkvk

#

≥

≥ 1

β
α1v1 +

1

rn−1
(α1 − αi)vi +

1

rn−1

X

k>1

αkvk ≥

Now, we can use i ≤ j to say: vi ≥ vj = 1
γ
v1 ≥

“

1 − 1
β

”

v1.

X

k

αkvπ(k) ≥
"

1

β
+

1

rn−1

„

1 − 1

β

«2
#

α1v1 +
1

rn−1

X

k>1

αkvk

So, we would like to find some rn such that we can say that
P

k αkvπ(k) ≥ 1
rn

P

k αkvk for all β ≥ 1, so we would like to
have:

1

rn

≤ min

(

1

rn−1
,
1

β
+

1

rn−1

„

1 − 1

β

«2
)

for any β ≥ 1. But notice some other bound we can get is:

X

k

αkvπ(k) ≥
1

γ
α1v1 +

1

rn−1

X

k>1

αkvk

≥
„

1 − 1

β

«

α1v1 +
1

rn−1

X

k>1

αkvk

by following the lines of the proof of last theorem, but re-
moving slot 1 and advertiser j in the inductive step. So
another alternative is to get:

1

rn

≤ min



1

rn−1
, 1 − 1

β

ff

for every β ≥ 1. So if we can get 1/rn bounded by the max-
imum of those two quantities, we are done. Summarizing
that, we need:

rn ≥ max

(

rn−1,

"

max

(

1 − 1

β
,
1

β
+

1

rn−1

„

1 − 1

β

«2
)#−1)

for all β ≥ 1.

Now we need to evaluate for which value of 1
β

∈ (0, 1] the

expression max



1 − 1
β
, 1

β
+ 1

rn−1

“

1 − 1
β

”2
ff

has its mini-

mum. The minimum can be in two points: the minimum of
the quadratic function or the intersection between those two
functions. They intersect at 1

β
= −r + 1 +

√
r2 − r (where

r stands for rn−1) and the quadratic minimum is at 1− 1
2
r.

So, for r ≥ 4
3
, the minimum occurs in the intersection and



Figure 2: Sequence of values rk that are an upper

bound of the price of anarchy for k slots

for r < 4
3
, it occurs in the quadratic minimum. So:

rn =

8

>

>

<

>

>

:

“

1 − rn−1

4

”−1

, rn−1 <
4

3
„

rn−1 −
q

r2
n−1 − rn−1

«−1

, rn−1 ≥ 4

3

since we want the smallest possible ratio. This allows to
define rk recursively from r2 = 1.25 and it is easy to see that
the sequence monotonically converges to the fixed point of

that function which is the golden ration ϕ = 1+
√

5
2

≈ 1.618,
as shown in Figure 2. This happens because the function
that maps rn−1 to rn is non-decreasing and has a fixed point
in ϕ, so if rn−1 ≤ ϕ then rn ≤ ϕ.

To illustrate how symmetric and easy to work with this new
formulation is, we also add the following result:

Theorem 8. The worse possible price of anarchy among
all possible parameters n, α, v and all possible weakly feasible
permutations π occurs when π is a simple cycle, i.e, exist
{x1, ..., xn} = {1, ..., n} such that π(xi) = xi+1 for i < n
and π(xn) = x1.

Proof. If π is weakly feasible but is not a simple cycle,
then we can decompose this permutation as a product of
two disjoint permutations π = π1π2 with supports N1 and
N2, i.e, πi moves the bidders and slots with indices in Ni.
So, we have:
P

k αkvπ(k)
P

k αkvk

=

P

k∈N1
αkvπ(k) +

P

k∈N2
αkvπ(k)

P

k∈N1
αkvk +

P

k∈N2
αkvk

≤

≤ max

(

P

k∈N1
αkvπ(k)

P

k∈N1
αkvk

,

P

k αk∈N2vπ(k)
P

k∈N2
αkvk

)

and πi is weakly feasible over Ni (i.e., the restricted input
of slots with indices in Ni and advertisers with indices in
Ni).

3.3 Extension to separable click-through-rates
So far, we have considered that the click-through-rates of
advertiser i placed on slot j depends only on the slot in
which he is placed. A more general model called separable

click-through-rates assumes it depends on a product of
two factors: one depending on the bidder and other depend-
ing on the slot. Let’s say that if advertiser i is placed on slot
j, it will get click-through-rate γiαj where γi is some ”qual-
ity factor” attributed to each advertiser. The generalization
of Second Price Auction for this setting ranks the advertis-
ers in order of γibi and charges an advertiser the minimum
value it needed to bid to conserve his position. For example,
if π is the permutation defined by sorting γibi (i.e, π(k) is
the advertiser with the kth highest value of γibi) then we
charge advertiser π(j) the amount of: bπ(j+1)γπ(j+1)/γπ(j).

In this setting the utility of bidder i assigned to slot j is ui =

γiαj

“

vi − bπ(j+1)γπ(j+1)

γi

”

and the social welfare is given by
P

k αkγπ(k)vπ(k). Consider that α1 ≥ ... ≥ αn and that
γ1v1 ≥ ... ≥ γnvn. The definition of Nash equilibrium is
analogous. Notice we can obtain a result very similar with
Theorem 3 just by repeating the same calculations for this
model:

Theorem 9. Given v, α, γ and a feasible permutation
π (a permutation from a Nash equilibrium) in the separable
click-through-rate model, if i < j and π(i) > π(j) then:

αj

αi

+
γπ(i)vπ(i)

γπ(j)vπ(j)

≥ 1 (4)

Proof. Since advertiser π(j) can’t increase his utility by
taking slot i, we have that:

γπ(j)αj

„

vπ(j) −
bπ(j+1)γπ(j+1)

γπ(j)

«

≥ γπ(j)αi

„

vπ(j) −
bπ(i)γπ(i)

γπ(j)

«

using that bπ(j+1) ≥ 0 and bπ(i) ≤ vπ(i) we get the desired
result.

And all other results follow with almost no change.
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