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Abstract

The problem of minimizing the weighted sum of completionggwhen scheduling jobs on a single
machine subject to precedence constraints is NP-hardabuie solved in polynomial time for interest-
ing families of constraints, such as series-parallel gairgs and two-dimensional constraints. A class-
ical decomposition theorem of Sydney leads to a simple mohjial-time algorithm for series-parallel
constraints, but this is not particularly efficient since adimum flow computation is needed to compute
the decomposition. In contrast, an efficiént: log n) algorithm for scheduling with series-parallel con-
straints was given by Lawler in 1978, whose proof is veryigatie and subtle. Goemans and Williamson
gave a primal-dual proof of Lawler’s result based on a LRHaliation due to Queyranne and Wang. We
give an alternate primal-dual proof which is much simpled @based on the more natural Chudak-
Hochbaum formulation. After that, we turn our attention wwdimensional precedence constraints,
simplifying the recent result by Ambiihl and Matrolilli, lproving a stronger structural characterization
of a min-cut based approach to compute the optimal solution.
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1 Introduction

We consider the problem of minimizing the weighted sum of ptation times when scheduling jobs on
a single machine. This problem is known to be strongly NRthaowever there are polynomial solutions
for special classes of precedence constraints and appatigimalgorithms for the general case. The latter
are based on LP-relaxations of various integer programfioimgulations of the problem. In this paper, we
provide a primal-dual proof of Lawler’'s algorithm for optitihscheduling with series-parallel precedence
constraints that simultaneously (re)proves that theréndegral solutions producing feasible schedules for
the Chudak-Hochbaum ([CH]) formulation in the series-flek@ase. After that, we turn our attention to
two-dimensional precedence constraints and simplify anepolynomial-time algorithm given by Ambuhl
and Mastrolilli [1]. One reason to focus on this schedulimglyem is its close relationship with the vertex
cover problem, as highlighted by a number of recent paper4,[3] on this scheduling problem and its
special cases.

Consider a set of jobs[n] = {1,...,n}, where each jol has processing timg; and weightw; and
there is a partial ordeP on the jobs, which we call precedence constraints. We denetg if i precedeg
in the partial order and|| j if the jobs are unrelated. A feasible schedule is a lineagresion of the partial
order P. The completion time of jolj, denoted byC}, is the sum of the processing times of jpland the
jobs scheduled beforg The objective is to minimiszj w;C;. This was shown to be NP-hard by Lenstra
and Rinnooy Kan [12] and Lawler [11]. Lawler also provided & logn) solution to the case where the
precedence constraints are series-parallel. Other paliaktime algorithms exist for that problem, mainly
algorithms based on Sydney’s decomposition, but thoseitigts involve solving LPs or performing max-
flow computations, which makes their running times considigrworse than Lawler’s algorithm.

Series-parallel constraints are a class of recursivelyeeéfprecedence constraints where the empty set
of constraints is series-parallel and given two disjoirts $& and .S, of jobs and series-parallel constraints
defined on each of them we can use two operations to produes-gparallel constraints off = S U So:
(i) the series operation: take all the existing precedertaions and — j for all i € S; andj € S, and
(i) the parallel operation: take just the existing precemerelations. Lawler’'s algorithm has a complicated
combinatorial proof which is full of subtleties (see als@])1 A different proof of correctness of Lawler’s
algorithm was given by Goemans and Williamson [8], who gaueraal-dual proof based on the Queyranne-
Wang [15] formulation. This formulation is somewhat unmatuand this makes the construction intricate
and technically hard in some points. Takipngs) = Zjespj, the Queyranne-Wang formulation is given

by:

minz w;(M; 4+ p;/2) s.t.
J

M; =Cj —pj/2, Vj € [nl;
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A more natural formulation of this scheduling problem asraegder linear program was given by Potts
[14]. This formulation played a central role in developitg tconnection between the vertex cover prob-
lem and minimizing the weighted completion time with premece constraints. A further relaxation was
proposed by Chudak and Hochbaum [4] and this also helpedjhdidint the connection between those two
problems. We refer to this formulation as [CH]:



min Z wj | pj + Z 6ijpi S.t.
J

i#]
8ij + 05 = 1, Vi, ji )
dij =1, Vi — 7
0ij + 0k + 0k > 1, Vj—ik |,k J;
dij >0, Vi, j.

The Potts formulation (referred to as [P]) is the same but wie constraind;; + 6,5 + d,; > 1 for all
triples (i, j, k). The natural way of thinking about it is thay; is a Boolean variable which isif ¢ comes
before; and0 otherwise. Both the relaxation of the natural vertex corerahd [CH] have half-integral
optimal solutions and have the persistence property; shétére exists an optimal integer solution that can
be obtained by “rounding” only those variables se§ t.e., without changing the variables whose LP-value
is integral). It is easy to see that{ @, 1}-feasible point of [P] corresponds to a feasible schedulee Same
is not valid for [CH]. However, using the well-known notioifi 8idney decomposition ([16]), Correa and
Schulz [5] proved that if the precedence constraints aiesearallel, then there is an optimal solution to
the [CH] LP that is both integral and corresponds to a feasbhedule.

In this paper, we give a primal-dual proof of the correctnefskawler’'s algorithm that also produces
a dual solution for the [CH] formulation, thus simultanelyuseproving the theorem in [5]. The proof is
similar in structure as the proof given by Goemans and Wiil§ian, but as a consequence of the much
simpler and natural formulation we used, we get a much sinppleof as well.

A number of papers, starting with Margot, Queyranne and WaBpand Chudak and Hochbaum [4],
showed that the vertex cover problem and precedence cimestracheduling are closely related problems.
Correa and Schulz [5] and Ambuhl and Mastrolilli [1] indepently showed that precedence constrained
scheduling is a special case of the vertex cover problems fdsult was in part a consequence of the
better understanding of two-dimensional precedence @n&, which are the partial orders that can be
written as an intersection of two linear orders. Ambuhl amastrolilli [1] showed that given an integral
solution of [CH] for the two-dimensional partial order (vhi can be found by a min-cut computation),
if this solution doesn't correspond to a feasible schedtllere is anO(n3) procedure that fixes it, i.e.,
transforms it to a solution that produces a valid scheduteles the same objective value. We prove that
the minimum-cardinality minimum cut always produces aitdasschedule and this yields a much simpler
polynomial-time algorithm to compute the optimal schedoletwo-dimensional precedence constraints.

Both the vertex cover problem and scheduling with preceelemnstraints are NP-hard problems for
which there ar@-approximations, most of them obtained by studying linetaxations. Ambuhl, Mastro-
lilli, and Svensson [2] showed that there does not exist gnuwhial approximation scheme for the prece-
dence constrained scheduling problem, unless NP is ceatdinrandomized subexponential time. The
best hardness of approximation result based on NP-complgtefor the vertex cover problem is that no
1.36-approximation algorithm exists (unless P=NP). Khot andd®g[9]) showed that it is not possible to
approximate the optimal vertex cover value to within a facf® — e based on the Unique Games Conjecture
(which is stronger than assuming that P is not equal to NP)s8aand Khot [3] recently showed that an
even stronger conjecture based on Unigue Games would af#g that no approximation guarantee better
than 2 is possible for precendence constrained scheduldigourse, it still remains a distinct possibility
that stronger approximation guarantees can be attainedisgrroblem, and that motivates a better structural
understanding of its LP formulations.

One further question that remains open is the existencerf@pdual based approach to the polynomial-
time solvability of scheduling subject to two-dimensiopatcedence constraints. One possible approach to
this is to understand a sufficiently rich solvable speciakaaf the vertex cover problem. We believe that our
work is a step along the path to achieving this goal.
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Figure 1: Smith’s rule illustrated in a 2D-Gantt chart

2 Primal-dual proof of Lawler’s algorithm

Lawler’'s algorithm  One of the oldest results in scheduling theory, due to Sniitf}, [states that given

n independent jobs, a schedule minimizes their total wedhlktampletion time if and only if there is no
idle time and the jobs are sorted in order of non-increasay p; = w;/p;, j = 1,...,n. Thus, given
precedence constraints, if there is such a sorted ordeisticansistent with these precedence constraints,
then that schedule is also optimal. One way to understasddhult is via a 2-dimensional (2-D) Gantt chart,
as named by Goemans & Williamson [8], but introduced ealdieEastman, Even, and Isaacs [7]. In this
chart, thex-axis corresponds to time (as in an ordinary Gantt chart),thay-axis corresponds to the total
weight remaining; each job is represented by a rectangl&efs by w;, and, for example if the jobs are
scheduled in index order, then the rectangle forjdias its upper left-hand corner@:{:’l1 Djs Z?:j wj)

and its lower-right hand corner 68 7_, p;, > _iej_1wj). As shown in Figure 1 below, the “area under the
curve” corresponds exactly to the objective function, tlope of the diagonal of the rectangle for jghs
—p;, and a swap of two consecutive rectanglesd; + 1 with p;_; < p; decreases the objective function.

The essential idea behind Lawler’s algorithm for seriesiel constraints is that any such input can be
reduced to the problem of scheduling a collection of contpgsbs, each of which consists of a disjoint
sequence of jobs, such that an optimal (and feasible) sthedn be found simply sorting the composite
jobs in the corresponding order; if a composite jpbs formed from the simple jobg,, ..., j, we say
Wo = Wj, ++ -+ Wj,, Pa = Pj, +...+Dj,, andp, = w(a)/p(a). Consider an instance with series-parallel
constraints. These constraints can be represented by iy lsimacture treewhere each leaf corresponds
to a distinct job and each internal node is either a parafieiosition operation or a series composition
operation. Given the structure tree, the constraints amdredd the following way: at each internal node, we
inherit all of the constraints derived for its two childreand for each series node in whiéh is the set of
leaves in its left subtree, arf}, is the set of leaves in its right subtree, we also add the @nsj — & for
each jobj € S; and each jol& € Ss.

Lawler’s algorithm worksottom-upin the structure tree: for each node, it produces a feasihledsile
of the jobs in the subtree of that node, or more preciselyatipces a list of composite jobs whose sorting
yields a feasible schedule (for the constraints impliedhay subtree). Each leaf has a list of one “composite”
job (i.e., the single-element composite job corresponthribat leaf). When we process a node, we look at its
two children in the structure tree: each has a list of compgsbs sorted by non-increasipgvalue, which
form a feasible schedule. Let them Be andSs. For a parallel composition node, the algorithm performs
amerge sortof the S; and.S,, sorting them by non-increasingvalue. For a series compaosition node, we
would like to do the natural thing: just concaten&teand.S,. The problem is that now the composite jobs
need no longer be sorted accordingptoTo fix this, we form a new composite job by concatenating the



smallest ratio job inS; to the highest ratio job irb5; if this new composite job has ratio no more than the
lowest remaining one ity; and at least the highest ratio #, we are done processing that node; if not,
one of these two inequalities is violated, and so we iteggtikeep merging this new composite job with the
minimum ratio job inS7 or maximum ratio job inSy (depending on which inequality is violated). In fact, as
noted in [8], there is an unique minimal way of doing this aggtion of jobs, by taking the lower convex

hull in the2D-Gantt chart. A more formal description can be found in [10].

We give a simpler new primal-dual proof of optimality by dgithe following: we execute Lawler’'s
algorithm and then we look at its execution backwards. Windeing it backwards, we construct a dual
solution for the [P] formulation. In the end, we argue that ttual variables corresponding to the equations
present in [P] but not in [CH] remained 0, and hence, we hawgahgblution to [CH] as well.

Dual of Potts’ formulation Potts’ formulation [P] is nearly the same as that of Chudak &chkbaum
[CH], but with §;; + 0, + dx; > 1 (transitivity constraints) for each triple. Consider itsadllinear program,
wherey;; correspond t@;; + d;; = 1, v;; for 6;; = 1 for i — j andz;;;, for the transitivity constraints. In
this linear program, we identify the variablgg andy;; since they refer to the same primal constraint. We

also identifyz; 1, zjr; andz;; since they also refer to the same constraint. The dual tes[P] i

maxz Yij + Z’Ul'j + Z Zijk + ijwj S.t.
ij i—j ijk j
(yij + Z Zijk < piw; Vi j
k
Yij +vig + Y zijk < piwj Vi —
k
\ Yij, wij 2 0
Consider the output of Lawler’s algorithm and suppose thatjobs are indexed in the order in which

they are scheduled in this output: the primal solution ggts= 1 if and only if i < j. We are aiming to
prove that the schedule is optimal via a feasible dual smiytand so we can examine properties of optimal
primal-dual pairs of solutions. Of course, a priori ther@dsassurance that such a solution is achievable -
but in fact, this is what we end up proving. By complementdaglaness, the dual constraint associated with
the variabled;; should be tight fori < j. So the dual solution has the following structure for j, where
we definev;; = v;; if ¢ — j andv;; = 0 otherwise:

()

Yij + Dij + Z zijr = piw;  (forward constraint)
k
Yij + > zjik < pjwi (backward constraint)
k
Now, let's see what complementary slackness has to say éteut;; variables. We view the triple
(1,4, k) as a directed cycle. Then there are two possibilities: eitteehave two arcs forward and one arc
backwards, or we have two arcs backwards and one arc forwhatkere are two arcs forward, we have
dij + 0,1 + Oxi = 2; since the primal constraint is thereby slack, the corredpm dual variable must be 0.
In the other case, the primal constraint is tight, so we dosvald to set a positive value for the dual variable.
Suppose we focus on a pair< j. Then we must have < k < j in order forz;;;, > 0;if &k < 7 or
k > j, then we must have;;;, = 0. This has a very nice implication: if < £ < j andz;;, > 0, this
variable appears in the dual constraintsdgr(i < j), é;x (j > k) andd; (k > 7). So, each positive;
appears only once in the left-hand-side of a forward coimgtead twice in the left-hand-side of a backwards
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constraint. This fact is very useful, because the sum oétitHand-sides of the forward constraints is exactly
the objective function, and since they must be tight, thedbje function is the sum of the right-hand-side
of the forward constraints, plus the constant térip;w;. It follows that if we can satisfy all forward and
backward constraints and complementary slackness, thdravwea dual solution that matches the primal
solution.

Our problem is now reduced to computing valuegofw, z) that satisfy the equations (3) for< j so
that z;;, = 0 for all cycles(s, j, k) with two forward arcs. If we can do that, we are done. Furthetice
that this is a really easy thing to doiif— j. For any choice ot;;;, values, we can always set:

Vij = pjwi — 3 zik and v = pawj — yij — > Zijks
k k

becausegy;; andv;; are unrestricted in sign. So we can reformulate our problesagisfying equations (3)
for i < j andi - j. Notice that this is possible if and only if:

Gij = pjw; — piw; +Zzijk - szik >0 Vi<j,i-»j.
k k

The rest of the proof will be to define values 5f; so that allp-values become nonnegative. Suppose we
perturb the current values of What is the influence of increasing;;,, say bye on the¢ values? We have
that¢,; is increased by and bothg;,; and¢;;, are decreased by

Notice that we need to guaranteg > 0 only wheni —+ j. The values ob;; for i — j can be arbitrary.
So, ifk — j, we don't care aboup;; and changing;;;, means effectively subtracting some value from
and adding it tap;;. We summarize this in the following:

Lemma 1 Consideri < k < j. If i — F, itis possible to "transfer” any amount from; to ¢;;; that is,
we can decrease the former by> 0 while increasing the latter by the same amount. Analogoifsty— j
we can "transfer” any amount frorp;;, to ¢;;.

The execution of Lawler’'s algorithm creates a nested jobcstre: compound jobs are formed from
smaller compound jobs, which are ultimately formed frongktons. When the algorithm terminates, the
solution is given in terms of compound jobs that are sortedoin-increasing-order. Our main idea is to
solve the problem from the top-level structure to the bottewel structure.

Given two compound jobs and wherea is scheduled beforg we defineigas = 3¢, ;e dij- We
will design a two-phase procedure to set thg, variables, and therefore give a constructive proof to the
following theorem:

Theorem 2 It is always possible to set the the values:&fo that in the end, for each pair of simple jobs

1 < jwithi - j, we have:
Wy ,Wg
o =y (2222 1)
Vo pa/pg

wherea is the maximal compound job containingind not containingj and 3 is the maximal compound
job containingj and not containing.

Corollary 3 1t is always possible to set the the values:@&fo that in the end, for each pair of simple jobs
i < jwithi - j, we havep;; > 0.

Proof of Corollary 3: If « and are not part of any compound job (i.e. they are in the top légstription),
then they are in Smith’s rule order. Hené}’% > ;’j—g and thereforep;; > 0. Otherwise, they are building
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blocks for a compound job. In this case, if they are not in 8imibrder, themy — 3 what is impossible,
because, due to the fact that the constraints are serielghait would imply that; — j. [

Now we begin describing the two-phase procedure. In theghase, we will only make horizontal
transfers: that is, we will transfer fromy,; to ¢;;. This is the same as increasing the value:gf for
1 < k < jandi — k. In the second phase we will make all vertical transferg, ithave will transfer value
from ¢;;, to ¢;;, what is equivalent to increasing;;, fori < k£ < j andk — j. From now on we will just
say "transfer” from some to some other, but keep in mind that is equivalent to increasing the value o
the properz;;;, as indicated here.

First phase: Horizontal Transfers The terms horizontal and vertical transfers come from a ggom
interpretation ofp;; as rectangular block that is the intersection of the regielov job: and to the left of
job j. We think of each of those blocks as initialized withyv; — p;w; and then we transfer value between
them so that in the end the blocks; with 7 —+ j have a positive value. The rules we defined result in
horizontal or vertical transfers.

Let's consider the top-level description of the solutionLafvler’'s algorithm, when we just have com-
pound jobs sorted according to Smith’s rule. In each iterative choose one of those compound jobs and
break it into its components. This way we get a more “refinadiiesiule description. In each iteration, we
want to set the values af;;, so to maintain the following invariant:

e for each pair of simple job$ < j in different compound jobs in the current description suwdt t
i + j, their ¢ value is given byip;; = p;w; — p;w;, where

~ w w
Wi = w; + p; <—a - —a>
Pa Pa

anda is the compound job in the current description contairiranda is the highest level compound
job containing: but not;.

e 2, = 0foralli,j,kinthe same compound job in the current description.

o 7z =0foralli <k < jwithk — j (i.e., we don’t make vertical transfers)

Consider the following method: if we initialize al};;, = 0, it is easy to see that the invariant holds. For
the recursive step: suppose the invariant holds and we piok €ompound job and break it into components.
Now, for a pairi < j, consider the following possible cases:

e they were in the same compound job in the last iteration amdthey are in different ones. Then the
higher level where they are separated is exactly the contpfmnthat contained them in the current
description, so if we just don’t changevalues that affects;;, we maintain the invariant.

e ¢ hasn't changed from last iteration, so the invariant res&alid if we don’t change: values that

affecto;;.
e if a from the previous iteration is splitinto a sequence of (cooml) jobsay, as, . . ., ag, Ggi1, .-, Ayl
wherea, as, .. ., a isin Smith’s order andy 1, . . ., ax; is in Smith’s order, but the whole sequence

is not. We also know that:

Wq,, Wa,, w w w,
TRl s> TR s s T s L > Ok

pak+1 o o pak-H o pa o pal pak




Figure 2: Arrows indicate where transfers occur

and also notice that fgs = 1,...,k andq = k + 1, ldots, | we havea, — a4, SO by Lemma 1, we
can "transfer” from¢,; to ¢,; for any s € a, andt € a,. We will transfer the following amount (as

depicted in Figure 2:

(M_ wap)
Ay = pip (waq wa> Ps \ pa ™ Pap

Wa _ '
aq Pa p=1...k pg Pap — Wap

Now, let's argue that after those "transfers” the invarisniaintained. Fos € a,, we have that it

received:

P (5~ o)

w S\ Pa Pa w,

> de=n| X we, - Y, s =g (e e
ap

W
t€agiq=k+1,....k+1 q=k+1,....k+1 Pa 2 p=Lidots k py Pay

because:

Wy, Wq
g Way, — ——Paqg = E ——Pa, — Way,-

q=k+1,ldots,k—+1 a p=1,...k ¢

This means that in the value of; for somes € a,, we are updatingy, to:

w w w w w w
ws+ps<_a__a> +ps<_a—ﬂ>:ws+ps<_a— ap>
Pa Pa Pa Pa, Pa Pa,

The calculation to prove thate a, also satisfies the invariant is analogous.

After that, we proved the following lemma (just by settilg- 7 in the invariant):
Lemma 4 After some horizontal transfers we reach a situation wherefchi < j and: -» j we have:

7 ~ w
¢ij = pjw; — piw; where w; =p,— >0

o

and « is the highest level compound jobs that contaitsit notj, wherea is well-defined since we vieiv

as a compound job with a single job.



Second phase: Vertical transfers In this phase we do roughly the same thing, but making theteas in
the vertical direction. We will maintain the following intiant:

e for each pair of simple job$ < j in different compound jobs in the current description suwdt t
i + j, their ¢ value is given byip;; = p;w; — p;w; where:

~ Pp Pb
pemon(5-3)

andb is the compound job in the current description that contgjrend g is the highest level com-
pound job that containg but noti.

e 7, = 0foralli,j,kinthe same compound job in the current description.

Again, we will begin with the top-level description of thehedule, but with the) values we obtained
from the first phase. Itis easy to see that the invariant Holdbe top-level schedule, because: 3. For the
recursive step: suppose the invariant holds and we pick somg@ound job and break it into components.
Now, for a pairi < j, consider the following possible cases:

e they were in the same compound job in the last iteration amdthey are in different ones. Then the
higher level where they are separated is exactly the contpfmnthat contained them in the current
description, so if we just don’t changevalues that affects;;, we maintain the invariant.

e b hasn't changed from last iteration, so the invariant resaadid if we don’t change: values that
affect¢;;, the invariant is maintained.

e if bfrom the previous iteration gets broken in a sequence of poamd) jobS,, ba, . .., b, brr1, - - -, bkt
whereby, bo, ..., by IS in Smith’s order andy. 1, . . . , bi1; is in Smith’s order, but the whole sequence
is not. We also know that:

M>...>M>%>%>... Why,

Dby  DPhyy Db Dy Dby,

and also notice thatfgr = 1,..., kandg = k + 1,...,l we haveb, — b,, SO by Lemma 1, we can
"transfer” from¢;, to ¢;; for anys € a, andt € a,. We will transfer the following amount:

w, (p_b _ pﬂ)
Ayt = wiw <&—@> R
St — 1S
2.

Py .
Do, Wp q=k-+1,....k+1 w, Wbq — Pbg

The analysis is identical to that done for the first phase.

And with this, we have given a constructive proof for TheoZznmwhich is our main result.

Chudak-Hochbaum formulation and min-cuts Although the result proved in the previous subsection
appears to be for the Potts’ formulation, in fact it is sigydfitly stronger. The dual solution found is a
feasible dual solution for the [CH] formulation, since westjisetz;;, > 0 for i« < k£ < j and either
i — kork — j. There is always one precedence relation involved, thexefee just use dual variables
that correspond to constraints that are in the [CH] fornmohat This proves that [CH] for series-parallel
precedence constraints has a optimal solution which igiiateand also a feasible schedule.

For series-parallel constraints (actually, also for theabler class of two-dimensional partial orders) we
can write [CH] as a min-cut computation. The LP (1) can be itgsvr as:



min Z w;p; + Z 5@']’ (piwj — pjwi) S.t.
i2>] i<y
0ij = 1, Vi — j;
5ik > 5jk7 Vi —>] < k;
Oki éékja Vk <i— j;
dij > 0, Vi, j,

(4)

which can be easily formulated as a min-cut problem. Consiaefollowing graph consisting of one vertex
for eachd;; variable withi < j and two extra nodesandt which will be the source and the sink respectively:
(1) fori - j, an edge of capacity;w; from s to §;; and an edge of capacify;w; from ¢;; to ¢; (2) for

i — 7, an edge of capacity from s to ¢;; and an edge of capacipyw; fromé;; to ¢; (3) fori — j < k, an
edge of capacityo from §;;, to d;;; (4) for k < i — j, an edge of capacityo from é; to d;;.

It is easy to see that integral feasible values;ptorrespond to a cut in the graph: associgjaevith the
cut (S, S) whereS = {s} U {4;;|6;; = 1}. Itis straightforward to see it is &a— 1 mapping and that the
capacity of the cut is the same of the objective function fhesconstan} j w;p;. SO, we just need to prove
that the cut obtained by Lawler’s algorithm is optimal. lder to do that, we will show how our previous
proof produces automatically a flow in the graph matchingddgacity of the cut. We say that an linear
extension of given precedence constraints is nonsepgriatior any pairi — j and jobk that is unrelated
to bothi andj, thenk either precedesor follows j in the extension.

Theorem 5 Given the jobs in any non-separating linear extension toptleeedence constraints, consider
the min-cut graph associated to this instance by the [CHirfolation. Givenr : [n] — [n] the ordering
of the jobs in the optimal solution produced by Lawler’s aityon, i.e.,7(j) is the j** job in the ordering,
consider the cutS, S) whereS = {s}U{d;;; m(i) < w(j)}. Itis the min cut of the graph and the "transfers”
made in the first proof produce a max-flow in that graph.

Proof. As expected, we prove the optimality of that cut by producinmatching flow. We do this the
following way:

o for each edgés, ,;) and(d;;,t) add flow corresponding to the capacity of that edge.

o for each transfed (jyx(x) 1O dr(ir(x) W havei — j, i » k andr(j) < w(k) (remembetr, j, k refer
to some non-separating order and), 7 (j), 7(k) relate to the optimal order). Since the jobs are in a
non-separating order, there are two possibilities:

— J < k and therefore both;; andd;. are in theS side, so add the “amount transferret ;) )
10 ¢rr(i)m(k) tO the edged;x, dix);

— k <iand therefore bothy; anddy; are in thel side, so add the “amount transferrel; ;). )
t0 ¢ (iym(k) tO the edg€dri, 0x;);

o for each transfet ).y t0 ¢r(i)r(;) We havei — j, k - jandw(k) < =(i). There are two
possibilities:

— k < iand therefore bothy; anddy; are in theS side, so add the “amount transferregl ;).
10 ¢ ()r(5) 1O the edgedy;, dx;);

— j < k and therefore both;;, andd;;, are in thel” side, so add the “amount transferreﬁi,;'(k)ﬂ(i)
10 G (k)r(5) tO the edged;, dix);



We don't have exactly a flow, but we have something that canaséyebe converted in a max-flow
matching the min-cut, since we have: the sum of the flow in tgee crossing the cut frosito S matches
the min-cut; there is no flow fron§ to S; and the net balance from the nodiggsin S is non-negative. It is

in fact
Wq , W3
Net balancé;;) = p;w; — pjw; + flows = p;w; | —/——-1] >0
Pa  Pg
wherea is the highest level compound job containingut not; andj3 is the highest level compound job
containing; but noti. On the other hand, the net balance from the nages S is non-positive. It is in
fact:
Net balancéél-j) = p;w; — piw; + flows = —PjW; <%/% — 1> <0.
Pp Pa
Given that, it is easy to correct the flow so that it becomeslid ¥i@w - we just need to return some
flow to s, which can be easily done. Using a procedure similar to thehdirge operation in Push-Relabel
algorithms, it is easy to return the excess flow to the sinktiddaalso that using this, we never change the
flow in the edges crossing the cut. [ |

3 Two-dimensional precedence constraints: finding the righcut

A two-dimensional partial order is a partial order that canalsitten as an intersection of two linear orders.
An equivalent characterization is given in [6]: they prokatttwo-dimensional partial orders are the partial
orders that have a non-separating linear extension.Ple¢ a partial order and be a linear extension of
P. We sayL is nonseparating ifi,j) € P andk || {i,j} in P implies either(k,i) € L or (j,k) € L.

In particular, this property makes it possible to write [(fdl] two-dimensional partial orders as a min-cut
problem (as we did with series-parallel constraints). Aetidranalysis of this kind of constraint can be
found in [5]. The authors conjecture that for this type ofge@ence constraints, [CH] always has an optimal
integral solution corresponding to a feasible schedulés @laim is proved by Ambuhl and Mastrolilli [1],
who give, for any integral solution of [CH] a procedure tonsérm it in a feasible solution to [P] with the
same objective value. The min-cut produced by [CH] mightsadisfy the transitivity constraints for triples
(i,7,k) such that || k£ || j || <. When this happens, according to [1], we chose the wrongauininstead of
providing a way to fix the solution, we show how to directly feadhin-cut that produces a feasible schedule.
This is done by re-interpreting the proof in [1].

Theorem 6 The minimum-cut with minimum cardinality “source set” alygaproduces a feasible schedule.

In order to prove Theorem 6, we need to review the results jind4 well as some facts about the
structure of cuts in a graph. First, let's introduce somecepits and notation from [1]: Lefi,j, k) =
{(i,7,k), (4, k,1), (k,i,7)} be a directed-cycle of [n] and letC be the set of all directe8-cycles. Given
a feasible solution to [CH] we definea; ; ) to bel if §;; = d;x = d; = 1, and O otherwise. This way,
a = Zm,,@ec i j.ky IS the number of triples that violate [P]. Given an integeddible (not necessarily

optimal) solutions to [CH] with a > 0 and some jolk contained in a violating triple defin¥ to be:

ko 1-— 6ij if Qijk) >0
K Sij otherwise

The following theorem is proved in [1]:

Theorem 7 (Ambihl, Mastrolilli) Leté be an integral feasible solution for [CH] that is not feashior
[P], then:
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1. 6% is feasible for allk;
2. there exists a jol such that the objective value &f is no larger than that of:;
3. foranyk, o < a — |{(4,); apjy > 0},

Our result in based on a stronger version of second item ofthe®rem (which is Lemma 5(b) in
[1]). The authors prove Theorem 7 for any feasiblelf § is an optimal solution, then for anl, 6% is
feasible and optimal. This can be easily proved following pinoof [1]. The basic idea is: they prove that
i3 e >0 Liwi — Piws > 0 thend o agmpepiw; < 3w k) Pepji Which contradicts a
previous lemma saying it always holds with equality. Butsifis optimal,Z:(Z.J.):amk>>O pjw; —piw; > 0
for all k, and anyk for which this inequality holded strictly would imply thegquality from which the result
follows. A more formal statement is:

Theorem 8 Letd be an integral optimal solution for [CH] that is not feasiller [P]; then for each jobk,
the objective value af is equal to that ob.

Theorem 8 already gives us an “almost-all-instances” téthat is, a result that holds for a randomly
selected instance, except for a set of measure zero): fix#wegence constraints, consider the parameters
p, w and suppose that there is more than one minimum cut in théngtlagn, one of a polynomial number
of equations of the form, the value dfquals the value af;,, must hold. Since there are only finitely many
of those equations, the spacepoiv for which there is more than one minimum cut is the compleroéttie
union of finitely many polynomials’ zero-sets, and therefa set of measure zero. To use this result to solve
the general case (that is, without the probabilistic assiomp we could add a random perturbation to the
p, w parameters and thereby be confident that the solution isignighile showing that if the perturbation
is sufficiently small, it won't affect the optimality of theokition found. There are substantial hurdles to
implementing this approach: in particular, even ratheh&igated arguments suggest that the bounds on the
perturbation will require a polynomial number of bits pgpum parameter, which would lead to substantially
slower algorithms. Fortunately, there is an easier way ofgithat without adding random noise.

Theorem 6 states that the cut with the fewest nodes in thesaiole always produces a feasible sched-
ule. This cut is actually very simple to compute: given a flax+in the graph, this cut is the set of reachable
nodes from the source in the residual graph. The main ingne¢dif this proof is that the set of all minimum
(s,t)-cuts in a graph form a laminar family, which means thdtdf, 7 ) and (S2, T) are minimum(s, t)-
cuts then(S; N Se, 71 U Ty) and (S U Sy, Th N Ty) are also. This means thatsfis the set of reachable
nodes from the source in the residual graph in a max-flow, thens’ for all min-cuts(S’, 77).

Proof of Theorem 6 : Suppose the minimum-cardinality miniumum-cut correspotada solutior with a
violated Potts triplg, j, k). Supposeé < j < k; thend;; = d;;, = 1 andd;, = 0, i.e.,d;; anddj, are on the
source side of the cut, ardg, is on the sink side. Using Theorem 8, there is one min-cuessptted by*
whered;; = 0, i.e.,d;; is in the sink-side of the min-cut, which is a contradictiemce it is in the smallest
possible min-cut, it must be on the source side of all mirscliti < & < 7, then the proof is analogousa
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