
A Simpler Primal-Dual Proof of Lawler’s Algorithm

Renato Paes Leme∗ David B. Shmoys†

Abstract

The problem of minimizing the weighted sum of completion times when scheduling jobs on a single
machine subject to precedence constraints is NP-hard, but can be solved in polynomial time for interest-
ing families of constraints, such as series-parallel constraints and two-dimensional constraints. A class-
ical decomposition theorem of Sydney leads to a simple polynomial-time algorithm for series-parallel
constraints, but this is not particularly efficient since a maximum flow computation is needed to compute
the decomposition. In contrast, an efficientO(n log n) algorithm for scheduling with series-parallel con-
straints was given by Lawler in 1978, whose proof is very intricate and subtle. Goemans and Williamson
gave a primal-dual proof of Lawler’s result based on a LP-formulation due to Queyranne and Wang. We
give an alternate primal-dual proof which is much simpler and is based on the more natural Chudak-
Hochbaum formulation. After that, we turn our attention to two-dimensional precedence constraints,
simplifying the recent result by Ambühl and Matrolilli, byproving a stronger structural characterization
of a min-cut based approach to compute the optimal solution.

∗renatoppl@cs.cornell.edu. Dept. of Computer Science, Cornell University, Ithaca, NY14853.
†shmoys@cs.cornell.edu. School of ORIE and Dept. of Computer Science, Cornell University, Ithaca, NY 14853.

Research supported partially by NSF grants CCR-0635121, DMI-0500263, DMS-0732196, and CCR-0832782.

1 Introduction

We consider the problem of minimizing the weighted sum of completion times when scheduling jobs on
a single machine. This problem is known to be strongly NP-hard; however there are polynomial solutions
for special classes of precedence constraints and approximation algorithms for the general case. The latter
are based on LP-relaxations of various integer programmingformulations of the problem. In this paper, we
provide a primal-dual proof of Lawler’s algorithm for optimal scheduling with series-parallel precedence
constraints that simultaneously (re)proves that there areintegral solutions producing feasible schedules for
the Chudak-Hochbaum ([CH]) formulation in the series-parallel case. After that, we turn our attention to
two-dimensional precedence constraints and simplify a recent polynomial-time algorithm given by Ambühl
and Mastrolilli [1]. One reason to focus on this scheduling problem is its close relationship with the vertex
cover problem, as highlighted by a number of recent papers [5, 1, 3] on this scheduling problem and its
special cases.

Consider a set ofn jobs [n] = {1, . . . , n}, where each jobj has processing timepj and weightwj and
there is a partial orderP on the jobs, which we call precedence constraints. We denotei → j if i precedesj
in the partial order andi ‖ j if the jobs are unrelated. A feasible schedule is a linear extension of the partial
orderP . The completion time of jobj, denoted byCj , is the sum of the processing times of jobj and the
jobs scheduled beforej. The objective is to minimize

∑

j wjCj. This was shown to be NP-hard by Lenstra
and Rinnooy Kan [12] and Lawler [11]. Lawler also provided aO(n log n) solution to the case where the
precedence constraints are series-parallel. Other polynomial-time algorithms exist for that problem, mainly
algorithms based on Sydney’s decomposition, but those algorithms involve solving LPs or performing max-
flow computations, which makes their running times considerably worse than Lawler’s algorithm.

Series-parallel constraints are a class of recursively defined precedence constraints where the empty set
of constraints is series-parallel and given two disjoint sets S1 andS2 of jobs and series-parallel constraints
defined on each of them we can use two operations to produce series-parallel constraints onS = S1 ∪ S2:
(i) the series operation: take all the existing precedence relations andi → j for all i ∈ S1 andj ∈ S2 and
(ii) the parallel operation: take just the existing precedence relations. Lawler’s algorithm has a complicated
combinatorial proof which is full of subtleties (see also [10]). A different proof of correctness of Lawler’s
algorithm was given by Goemans and Williamson [8], who gave aprimal-dual proof based on the Queyranne-
Wang [15] formulation. This formulation is somewhat unnatural, and this makes the construction intricate
and technically hard in some points. Takingp(S) =

∑

j∈S pj, the Queyranne-Wang formulation is given
by:

min
∑

j

wj(Mj + pj/2) s.t.

Mj = Cj − pj/2, ∀j ∈ [n];
∑

j∈S

pjMj ≥
1

2
p(S)2, ∀S ⊆ [n];

1

p(B)

∑

j∈B

pjMj −
1

p(A)

∑

j∈A

pjMj ≥
1

2
(p(A) + p(B)), ∀A → B,A ∩ B = ∅.

A more natural formulation of this scheduling problem as an integer linear program was given by Potts
[14]. This formulation played a central role in developing the connection between the vertex cover prob-
lem and minimizing the weighted completion time with precedence constraints. A further relaxation was
proposed by Chudak and Hochbaum [4] and this also helped to highlight the connection between those two
problems. We refer to this formulation as [CH]:

1

min
∑

j

wj

pj +
∑

i6=j

δijpi

 s.t.

δij + δji = 1, ∀i, j;

δij = 1, ∀i → j;

δij + δjk + δki ≥ 1, ∀j → i, k ‖ i, k ‖ j;

δij ≥ 0, ∀i, j.

(1)

The Potts formulation (referred to as [P]) is the same but with the constraintδij + δjk + δki ≥ 1 for all
triples (i, j, k). The natural way of thinking about it is thatδij is a Boolean variable which is1 if i comes
beforej and0 otherwise. Both the relaxation of the natural vertex cover IP and [CH] have half-integral
optimal solutions and have the persistence property; that is, there exists an optimal integer solution that can
be obtained by “rounding” only those variables set to1

2 (i.e., without changing the variables whose LP-value
is integral). It is easy to see that a{0, 1}-feasible point of [P] corresponds to a feasible schedule. The same
is not valid for [CH]. However, using the well-known notion of Sidney decomposition ([16]), Correa and
Schulz [5] proved that if the precedence constraints are series-parallel, then there is an optimal solution to
the [CH] LP that is both integral and corresponds to a feasible schedule.

In this paper, we give a primal-dual proof of the correctnessof Lawler’s algorithm that also produces
a dual solution for the [CH] formulation, thus simultaneously reproving the theorem in [5]. The proof is
similar in structure as the proof given by Goemans and Williamson, but as a consequence of the much
simpler and natural formulation we used, we get a much simpler proof as well.

A number of papers, starting with Margot, Queyranne and Wang[13] and Chudak and Hochbaum [4],
showed that the vertex cover problem and precedence constrained scheduling are closely related problems.
Correa and Schulz [5] and Ambühl and Mastrolilli [1] independently showed that precedence constrained
scheduling is a special case of the vertex cover problem. This result was in part a consequence of the
better understanding of two-dimensional precedence constraints, which are the partial orders that can be
written as an intersection of two linear orders. Ambühl andMastrolilli [1] showed that given an integral
solution of [CH] for the two-dimensional partial order (which can be found by a min-cut computation),
if this solution doesn’t correspond to a feasible schedule,there is anO(n3) procedure that fixes it, i.e.,
transforms it to a solution that produces a valid schedule and has the same objective value. We prove that
the minimum-cardinality minimum cut always produces a feasible schedule and this yields a much simpler
polynomial-time algorithm to compute the optimal schedulefor two-dimensional precedence constraints.

Both the vertex cover problem and scheduling with precedence constraints are NP-hard problems for
which there are2-approximations, most of them obtained by studying linear relaxations. Ambühl, Mastro-
lilli, and Svensson [2] showed that there does not exist a polynomial approximation scheme for the prece-
dence constrained scheduling problem, unless NP is contained in randomized subexponential time. The
best hardness of approximation result based on NP-completeness for the vertex cover problem is that no
1.36-approximation algorithm exists (unless P=NP). Khot and Regev ([9]) showed that it is not possible to
approximate the optimal vertex cover value to within a factor of 2−ǫ based on the Unique Games Conjecture
(which is stronger than assuming that P is not equal to NP). Bansal and Khot [3] recently showed that an
even stronger conjecture based on Unique Games would also imply that no approximation guarantee better
than 2 is possible for precendence constrained scheduling.Of course, it still remains a distinct possibility
that stronger approximation guarantees can be attained forthis problem, and that motivates a better structural
understanding of its LP formulations.

One further question that remains open is the existence of a primal-dual based approach to the polynomial-
time solvability of scheduling subject to two-dimensionalprecedence constraints. One possible approach to
this is to understand a sufficiently rich solvable special case of the vertex cover problem. We believe that our
work is a step along the path to achieving this goal.

2

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

w1

w2

w3

w4

w1

w4

p1

p2

p3

p4

p1

p4

p2

p3

w3

w2

Figure 1: Smith’s rule illustrated in a 2D-Gantt chart

2 Primal-dual proof of Lawler’s algorithm

Lawler’s algorithm One of the oldest results in scheduling theory, due to Smith [17], states that given
n independent jobs, a schedule minimizes their total weighted completion time if and only if there is no
idle time and the jobs are sorted in order of non-increasing ratio ρj = wj/pj , j = 1, . . . , n. Thus, given
precedence constraints, if there is such a sorted order thatis consistent with these precedence constraints,
then that schedule is also optimal. One way to understand this result is via a 2-dimensional (2-D) Gantt chart,
as named by Goemans & Williamson [8], but introduced earlierby Eastman, Even, and Isaacs [7]. In this
chart, thex-axis corresponds to time (as in an ordinary Gantt chart), and they-axis corresponds to the total
weight remaining; each job is represented by a rectangle of size pj by wj, and, for example if the jobs are
scheduled in index order, then the rectangle for jobj has its upper left-hand corner at(

∑j−1
i=1 pj,

∑n
i=j wj)

and its lower-right hand corner at(
∑j

i=1 pj ,
∑n

i=j−1 wj). As shown in Figure 1 below, the “area under the
curve” corresponds exactly to the objective function, the slope of the diagonal of the rectangle for jobj is
−ρj, and a swap of two consecutive rectanglesj andj + 1 with ρj−1 < ρj decreases the objective function.

The essential idea behind Lawler’s algorithm for series-parallel constraints is that any such input can be
reduced to the problem of scheduling a collection of composite jobs, each of which consists of a disjoint
sequence of jobs, such that an optimal (and feasible) schedule can be found simply sorting the composite
jobs in the corresponding order; if a composite jobα is formed from the simple jobsj1, . . . , jk we say
wα = wj1 + · · ·+wjk

, pα = pj1 + . . .+pjk
, andρα = w(α)/p(α). Consider an instance with series-parallel

constraints. These constraints can be represented by a binary structure treewhere each leaf corresponds
to a distinct job and each internal node is either a parallel composition operation or a series composition
operation. Given the structure tree, the constraints are obtained the following way: at each internal node, we
inherit all of the constraints derived for its two children,and for each series node in whichS1 is the set of
leaves in its left subtree, andS2 is the set of leaves in its right subtree, we also add the constraint j → k for
each jobj ∈ S1 and each jobk ∈ S2.

Lawler’s algorithm worksbottom-upin the structure tree: for each node, it produces a feasible schedule
of the jobs in the subtree of that node, or more precisely, it produces a list of composite jobs whose sorting
yields a feasible schedule (for the constraints implied by that subtree). Each leaf has a list of one “composite”
job (i.e., the single-element composite job correspondingto that leaf). When we process a node, we look at its
two children in the structure tree: each has a list of composite jobs sorted by non-increasingρ-value, which
form a feasible schedule. Let them beS1 andS2. For a parallel composition node, the algorithm performs
a merge sortof theS1 andS2, sorting them by non-increasingρ-value. For a series composition node, we
would like to do the natural thing: just concatenateS1 andS2. The problem is that now the composite jobs
need no longer be sorted according toρ. To fix this, we form a new composite job by concatenating the

3

smallest ratio job inS1 to the highest ratio job inS2; if this new composite job has ratio no more than the
lowest remaining one inS1 and at least the highest ratio inS2, we are done processing that node; if not,
one of these two inequalities is violated, and so we iteratively keep merging this new composite job with the
minimum ratio job inS1 or maximum ratio job inS2 (depending on which inequality is violated). In fact, as
noted in [8], there is an unique minimal way of doing this aggregation of jobs, by taking the lower convex
hull in the2D-Gantt chart. A more formal description can be found in [10].

We give a simpler new primal-dual proof of optimality by doing the following: we execute Lawler’s
algorithm and then we look at its execution backwards. Whiletracing it backwards, we construct a dual
solution for the [P] formulation. In the end, we argue that the dual variables corresponding to the equations
present in [P] but not in [CH] remained 0, and hence, we have a dual solution to [CH] as well.

Dual of Potts’ formulation Potts’ formulation [P] is nearly the same as that of Chudak & Hochbaum
[CH], but with δij + δjk + δki ≥ 1 (transitivity constraints) for each triple. Consider its dual linear program,
whereyij correspond toδij + δji = 1, vij for δij = 1 for i → j andzijk for the transitivity constraints. In
this linear program, we identify the variablesyij andyji since they refer to the same primal constraint. We
also identifyzijk, zjki andzkij since they also refer to the same constraint. The dual to [P] is:

max
∑

ij

yij +
∑

i→j

vij +
∑

ijk

zijk +
∑

j

pjwj s.t.

yij +
∑

k

zijk ≤ piwj ∀i 9 j

yij + vij +
∑

k

zijk ≤ piwj ∀i → j

zijk ≥ 0 ∀i, j, k

yij , wij ≷ 0

(2)

Consider the output of Lawler’s algorithm and suppose that the jobs are indexed in the order in which
they are scheduled in this output: the primal solution setsδij = 1 if and only if i < j. We are aiming to
prove that the schedule is optimal via a feasible dual solution, and so we can examine properties of optimal
primal-dual pairs of solutions. Of course, a priori there isno assurance that such a solution is achievable -
but in fact, this is what we end up proving. By complementary slackness, the dual constraint associated with
the variableδij should be tight fori < j. So the dual solution has the following structure fori < j, where
we definêvij = vij if i → j andv̂ij = 0 otherwise:

yij + v̂ij +
∑

k

zijk = piwj (forward constraint)

yij +
∑

k

zjik ≤ pjwi (backward constraint)
(3)

Now, let’s see what complementary slackness has to say aboutthe zijk variables. We view the triple
(i, j, k) as a directed cycle. Then there are two possibilities: either we have two arcs forward and one arc
backwards, or we have two arcs backwards and one arc forward.If there are two arcs forward, we have
δij + δjk + δki = 2; since the primal constraint is thereby slack, the corresponding dual variable must be 0.
In the other case, the primal constraint is tight, so we are allowed to set a positive value for the dual variable.

Suppose we focus on a pairi < j. Then we must havei < k < j in order forzijk > 0; if k < i or
k > j, then we must havezijk = 0. This has a very nice implication: ifi < k < j andzijk > 0, this
variable appears in the dual constraints forδij (i < j), δjk (j > k) andδki (k > i). So, each positivezijk

appears only once in the left-hand-side of a forward constraint and twice in the left-hand-side of a backwards

4

constraint. This fact is very useful, because the sum of all left-hand-sides of the forward constraints is exactly
the objective function, and since they must be tight, the objective function is the sum of the right-hand-side
of the forward constraints, plus the constant term

∑

j pjwj . It follows that if we can satisfy all forward and
backward constraints and complementary slackness, then wehave a dual solution that matches the primal
solution.

Our problem is now reduced to computing values of(y,w, z) that satisfy the equations (3) fori < j so
thatzijk = 0 for all cycles(i, j, k) with two forward arcs. If we can do that, we are done. Further,notice
that this is a really easy thing to do ifi → j. For any choice ofzijk values, we can always set:

yij = pjwi −
∑

k

zjik and vij = piwj − yij −
∑

k

zijk,

becauseyij andvij are unrestricted in sign. So we can reformulate our problem as satisfying equations (3)
for i < j andi 9 j. Notice that this is possible if and only if:

φij = pjwi − piwj +
∑

k

zijk −
∑

k

zjik ≥ 0 ∀i < j, i 9 j.

The rest of the proof will be to define values ofzijk so that allφ-values become nonnegative. Suppose we
perturb the current values ofz. What is the influence of increasingzijk, say byǫ on theφ values? We have
thatφij is increased byǫ and bothφkj andφik are decreased byǫ.

Notice that we need to guaranteeφij ≥ 0 only wheni 9 j. The values ofφij for i → j can be arbitrary.
So, if k → j, we don’t care aboutφkj and changingzijk means effectively subtracting some value fromφik

and adding it toφij . We summarize this in the following:

Lemma 1 Consideri < k < j. If i → k, it is possible to ”transfer” any amount fromφkj to φij ; that is,
we can decrease the former byǫ > 0 while increasing the latter by the same amount. Analogously, if k → j
we can ”transfer” any amount fromφik to φij .

The execution of Lawler’s algorithm creates a nested job structure: compound jobs are formed from
smaller compound jobs, which are ultimately formed from singletons. When the algorithm terminates, the
solution is given in terms of compound jobs that are sorted innon-increasingρ-order. Our main idea is to
solve the problem from the top-level structure to the bottom-level structure.

Given two compound jobsα andβ whereα is scheduled beforeβ we define:φαβ =
∑

i∈α;j∈β φij . We
will design a two-phase procedure to set thezijk variables, and therefore give a constructive proof to the
following theorem:

Theorem 2 It is always possible to set the the values ofz so that in the end, for each pair of simple jobs
i < j with i 9 j, we have:

φij = piwj

(

wα

pα

/
wβ

pβ

− 1

)

whereα is the maximal compound job containingi and not containingj andβ is the maximal compound
job containingj and not containingi.

Corollary 3 It is always possible to set the the values ofz so that in the end, for each pair of simple jobs
i < j with i 9 j, we haveφij ≥ 0.

Proof of Corollary 3 : If α andβ are not part of any compound job (i.e. they are in the top leveldescription),
then they are in Smith’s rule order. Hence,wα

pα
≥

wβ

pβ
and thereforeφij ≥ 0. Otherwise, they are building

5

blocks for a compound job. In this case, if they are not in Smith’s order, thenα → β what is impossible,
because, due to the fact that the constraints are series-parallel, it would imply thati → j.

Now we begin describing the two-phase procedure. In the firstphase, we will only make horizontal
transfers: that is, we will transfer fromφkj to φij . This is the same as increasing the value ofzijk for
i < k < j andi → k. In the second phase we will make all vertical transfers, that is: we will transfer value
from φik to φij , what is equivalent to increasingzijk for i < k < j andk → j. From now on we will just
say ”transfer” from someφ to some otherφ, but keep in mind that is equivalent to increasing the value of
the properzijk as indicated here.

First phase: Horizontal Transfers The terms horizontal and vertical transfers come from a geometric
interpretation ofφij as rectangular block that is the intersection of the region below job i and to the left of
job j. We think of each of those blocks as initialized withpjwi − piwj and then we transfer value between
them so that in the end the blocksφij with i 9 j have a positive value. The rules we defined result in
horizontal or vertical transfers.

Let’s consider the top-level description of the solution ofLawler’s algorithm, when we just have com-
pound jobs sorted according to Smith’s rule. In each iteration, we choose one of those compound jobs and
break it into its components. This way we get a more “refined” schedule description. In each iteration, we
want to set the values ofzijk so to maintain the following invariant:

• for each pair of simple jobsi < j in different compound jobs in the current description such that
i 9 j, theirφ value is given by:φij = pjŵi − piwj , where

ŵi = wi + pi

(

wα

pα
−

wa

pa

)

anda is the compound job in the current description containingi, andα is the highest level compound
job containingi but notj.

• zijk = 0 for all i, j, k in the same compound job in the current description.

• zijk = 0 for all i < k < j with k → j (i.e., we don’t make vertical transfers)

Consider the following method: if we initialize allzijk = 0, it is easy to see that the invariant holds. For
the recursive step: suppose the invariant holds and we pick some compound job and break it into components.
Now, for a pairi < j, consider the following possible cases:

• they were in the same compound job in the last iteration and now they are in different ones. Then the
higher level where they are separated is exactly the compound job that contained them in the current
description, so if we just don’t changez values that affectsφij , we maintain the invariant.

• a hasn’t changed from last iteration, so the invariant remains valid if we don’t changez values that
affectφij.

• if a from the previous iteration is split into a sequence of (compound) jobsa1, a2, . . . , ak, ak+1, . . . , ak+l

wherea1, a2, . . . , ak is in Smith’s order andak+1, . . . , ak+l is in Smith’s order, but the whole sequence
is not. We also know that:

wak+1

pak+1

≥ · · · ≥
wak+l

pak+l

≥
wa

pa
≥

wa1

pa1

≥ · · · ≥
wak

pak

6

...

...

s t

j

a1

ak

ak+1

ak+l

a′

Figure 2: Arrows indicate where transfers occur

and also notice that forp = 1, . . . , k andq = k + 1, ldots, l we haveap → aq, so by Lemma 1, we
can ”transfer” fromφtj to φsj for anys ∈ ap andt ∈ aq. We will transfer the following amount (as
depicted in Figure 2:

∆st = pjpt

(

waq

paq

−
wa

pa

) ps

(

wa

pa
−

wap

pap

)

∑

p=1...k
wa

pa
pap − wap

.

Now, let’s argue that after those ”transfers” the invariantis maintained. Fors ∈ ap, we have that it
received:

∑

t∈aq ;q=k+1,...,k+l

∆st = pj

∑

q=k+1,...,k+l

waq −
wa

pa
paq

ps

(

wa

pa
−

wap

pap

)

∑

p=1,ldots,k
wa

pa
pap − wap

= pjps

(

wa

pa
−

wap

pap

)

because:
∑

q=k+1,ldots,k+l

waq −
wa

pa

paq =
∑

p=1,...,k

wa

pa

pap − wap .

This means that in the value ofφsj for somes ∈ ap we are updatinĝws to:

ws + ps

(

wα

pα

−
wa

pa

)

+ ps

(

wa

pa

−
wap

pap

)

= ws + ps

(

wα

pα

−
wap

pap

)

The calculation to prove thatt ∈ aq also satisfies the invariant is analogous.

After that, we proved the following lemma (just by settinga = i in the invariant):

Lemma 4 After some horizontal transfers we reach a situation where for eachi < j andi 9 j we have:

φij = pjw̃i − piwj where w̃i = pi
wα

pα
> 0

andα is the highest level compound jobs that containsi but notj, whereα is well-defined since we viewi
as a compound job with a single job.

7

Second phase: Vertical transfers In this phase we do roughly the same thing, but making the transfers in
the vertical direction. We will maintain the following invariant:

• for each pair of simple jobsi < j in different compound jobs in the current description such that
i 9 j, theirφ value is given by:φij = p̂jw̃i − piwj where:

p̂j = pj + wj

(

pβ

wβ

−
pb

wb

)

andb is the compound job in the current description that containsj, andβ is the highest level com-
pound job that containsj but noti.

• zijk = 0 for all i, j, k in the same compound job in the current description.

Again, we will begin with the top-level description of the schedule, but with theφ values we obtained
from the first phase. It is easy to see that the invariant holdsfor the top-level schedule, becauseb = β. For the
recursive step: suppose the invariant holds and we pick somecompound job and break it into components.
Now, for a pairi < j, consider the following possible cases:

• they were in the same compound job in the last iteration and now they are in different ones. Then the
higher level where they are separated is exactly the compound job that contained them in the current
description, so if we just don’t changez values that affectsφij , we maintain the invariant.

• b hasn’t changed from last iteration, so the invariant remains valid if we don’t changez values that
affectφij, the invariant is maintained.

• if b from the previous iteration gets broken in a sequence of (compound) jobsb1, b2, . . . , bk, bk+1, . . . , bk+l

whereb1, b2, . . . , bk is in Smith’s order andbk+1, . . . , bk+l is in Smith’s order, but the whole sequence
is not. We also know that:

wbk+1

pbk+1

≥ · · · ≥
wbk+l

pbk+l

≥
wb

pb

≥
wb1

pb1

≥ · · · ≥
wbk

pbk

and also notice that forp = 1, . . . , k andq = k + 1, . . . , l we havebp → bq, so by Lemma 1, we can
”transfer” fromφis to φit for anys ∈ ap andt ∈ aq. We will transfer the following amount:

∆st = w̃iws

(

pbp

pbp

−
pb

wb

) wt

(

pb

wb
−

pbq

wbq

)

∑

q=k+1,...,k+l
pb

wb
wbq

− pbq

.

The analysis is identical to that done for the first phase.

And with this, we have given a constructive proof for Theorem2, which is our main result.

Chudak-Hochbaum formulation and min-cuts Although the result proved in the previous subsection
appears to be for the Potts’ formulation, in fact it is significantly stronger. The dual solution found is a
feasible dual solution for the [CH] formulation, since we just setzijk > 0 for i < k < j and either
i → k or k → j. There is always one precedence relation involved, therefore, we just use dual variables
that correspond to constraints that are in the [CH] formulation. This proves that [CH] for series-parallel
precedence constraints has a optimal solution which is integral and also a feasible schedule.

For series-parallel constraints (actually, also for the broader class of two-dimensional partial orders) we
can write [CH] as a min-cut computation. The LP (1) can be rewritten as:

8

min
∑

i≥j

wjpj +
∑

i<j

δij(piwj − pjwi) s.t.

δij = 1, ∀i → j;

δik ≥ δjk, ∀i → j < k;

δki ≤ δkj, ∀k < i → j;

δij ≥ 0, ∀i, j,

(4)

which can be easily formulated as a min-cut problem. Consider the following graph consisting of one vertex
for eachδij variable withi < j and two extra nodess andt which will be the source and the sink respectively:
(1) for i 9 j, an edge of capacitypjwi from s to δij and an edge of capacitypjwi from δij to t; (2) for
i → j, an edge of capacity∞ from s to δij and an edge of capacitypiwj from δij to t; (3) for i → j < k, an
edge of capacity∞ from δjk to δik; (4) for k < i → j, an edge of capacity∞ from δki to δkj .

It is easy to see that integral feasible values ofδij correspond to a cut in the graph: associateδij with the
cut (S, S) whereS = {s} ∪ {δij |δij = 1}. It is straightforward to see it is a1 − 1 mapping and that the
capacity of the cut is the same of the objective function plusthe constant

∑

j wjpj. So, we just need to prove
that the cut obtained by Lawler’s algorithm is optimal. In order to do that, we will show how our previous
proof produces automatically a flow in the graph matching thecapacity of the cut. We say that an linear
extension of given precedence constraints is nonseparating if for any pairi → j and jobk that is unrelated
to bothi andj, thenk either precedesi or follows j in the extension.

Theorem 5 Given the jobs in any non-separating linear extension to theprecedence constraints, consider
the min-cut graph associated to this instance by the [CH] formulation. Givenπ : [n] → [n] the ordering
of the jobs in the optimal solution produced by Lawler’s algorithm, i.e.,π(j) is thejth job in the ordering,
consider the cut(S, S) whereS = {s}∪{δij ;π(i) < π(j)}. It is the min cut of the graph and the ”transfers”
made in the first proof produce a max-flow in that graph.

Proof. As expected, we prove the optimality of that cut by producinga matching flow. We do this the
following way:

• for each edge(s, δij) and(δij , t) add flow corresponding to the capacity of that edge.

• for each transferφπ(j)π(k) to φπ(i)π(k) we havei → j, i 9 k andπ(j) < π(k) (rememberi, j, k refer
to some non-separating order andπ(i), π(j), π(k) relate to the optimal order). Since the jobs are in a
non-separating order, there are two possibilities:

– j < k and therefore bothδik andδjk are in theS side, so add the “amount transferred”φπ(j)π(k)

to φπ(i)π(k) to the edge(δjk, δik);

– k < i and therefore bothδki andδkj are in theT side, so add the “amount transferred”φπ(j)π(k)

to φπ(i)π(k) to the edge(δki, δkj);

• for each transferφπ(k)π(i) to φπ(k)π(j) we havei → j, k 9 j andπ(k) < π(i). There are two
possibilities:

– k < i and therefore bothδki andδkj are in theS side, so add the “amount transferred”φπ(k)π(i)

to φπ(k)π(j) to the edge(δki, δkj);

– j < k and therefore bothδik andδjk are in theT side, so add the “amount transferred”φπ(k)π(i)

to φπ(k)π(j) to the edge(δjk, δik);

9

We don’t have exactly a flow, but we have something that can be easily be converted in a max-flow
matching the min-cut, since we have: the sum of the flow in the edges crossing the cut fromS to S matches
the min-cut; there is no flow fromS to S; and the net balance from the nodesδij in S is non-negative. It is
in fact

Net balance(δij) = pjwi − piwj + flows = piwj

(

wα

pα
/
wβ

pβ

− 1

)

≥ 0

whereα is the highest level compound job containingi but notj andβ is the highest level compound job
containingj but noti. On the other hand, the net balance from the nodesδij in S is non-positive. It is in
fact:

Net balance(δij) = pjwi − piwj + flows = −pjwi

(

wβ

pβ

/
wα

pα
− 1

)

≤ 0.

Given that, it is easy to correct the flow so that it becomes a valid flow - we just need to return some
flow to s, which can be easily done. Using a procedure similar to the discharge operation in Push-Relabel
algorithms, it is easy to return the excess flow to the sink. Notice also that using this, we never change the
flow in the edges crossing the cut.

3 Two-dimensional precedence constraints: finding the right cut

A two-dimensional partial order is a partial order that can be written as an intersection of two linear orders.
An equivalent characterization is given in [6]: they prove that two-dimensional partial orders are the partial
orders that have a non-separating linear extension. LetP be a partial order andL be a linear extension of
P . We sayL is nonseparating if(i, j) ∈ P andk ‖ {i, j} in P implies either(k, i) ∈ L or (j, k) ∈ L.
In particular, this property makes it possible to write [CH]for two-dimensional partial orders as a min-cut
problem (as we did with series-parallel constraints). A careful analysis of this kind of constraint can be
found in [5]. The authors conjecture that for this type of precedence constraints, [CH] always has an optimal
integral solution corresponding to a feasible schedule. This claim is proved by Ambühl and Mastrolilli [1],
who give, for any integral solution of [CH] a procedure to transform it in a feasible solution to [P] with the
same objective value. The min-cut produced by [CH] might notsatisfy the transitivity constraints for triples
(i, j, k) such thati ‖ k ‖ j ‖ i. When this happens, according to [1], we chose the wrong min-cut. Instead of
providing a way to fix the solution, we show how to directly finda min-cut that produces a feasible schedule.
This is done by re-interpreting the proof in [1].

Theorem 6 The minimum-cut with minimum cardinality “source set” always produces a feasible schedule.

In order to prove Theorem 6, we need to review the results in [1], as well as some facts about the
structure of cuts in a graph. First, let’s introduce some concepts and notation from [1]: Let〈i, j, k〉 =
{(i, j, k), (j, k, i), (k, i, j)} be a directed3-cycle of [n] and letC be the set of all directed3-cycles. Given
a feasible solutionδ to [CH] we defineα〈i,j,k〉 to be1 if δij = δjk = δki = 1, and 0 otherwise. This way,
α =

∑

〈i,j,k〉∈C α〈i,j,k〉 is the number of triples that violate [P]. Given an integral feasible (not necessarily

optimal) solutionδ to [CH] with α > 0 and some jobk contained in a violating triple defineδk to be:

δk
ij =

{

1 − δij if α〈ijk〉 > 0

δij otherwise

The following theorem is proved in [1]:

Theorem 7 (Ambühl, Mastrolilli) Let δ be an integral feasible solution for [CH] that is not feasible for
[P], then:

10

1. δk is feasible for allk;

2. there exists a jobk such that the objective value ofδk is no larger than that ofk;

3. for anyk, αk ≤ α − |{(i, j);α〈ijk〉 > 0}|.

Our result in based on a stronger version of second item of last theorem (which is Lemma 5(b) in
[1]). The authors prove Theorem 7 for any feasibleδ. If δ is an optimal solution, then for anyk, δk is
feasible and optimal. This can be easily proved following the proof [1]. The basic idea is: they prove that
if

∑

(i,j);α〈ijk〉>0 pjwi − piwj > 0 then
∑

(ijk) α〈ijk〉pkpiwj <
∑

(ijk) α〈ijk〉pkpjαi which contradicts a

previous lemma saying it always holds with equality. But sinceδ is optimal,
∑

(i,j):α〈ijk〉>0 pjwi−piwj ≥ 0

for all k, and anyk for which this inequality holded strictly would imply the inequality from which the result
follows. A more formal statement is:

Theorem 8 Let δ be an integral optimal solution for [CH] that is not feasiblefor [P]; then for each jobk,
the objective value ofδk is equal to that ofδ.

Theorem 8 already gives us an “almost-all-instances” result (that is, a result that holds for a randomly
selected instance, except for a set of measure zero): fix the precedence constraints, consider the parameters
p,w and suppose that there is more than one minimum cut in the graph; then, one of a polynomial number
of equations of the form, the value ofδ equals the value ofδk, must hold. Since there are only finitely many
of those equations, the space ofp,w for which there is more than one minimum cut is the complementof the
union of finitely many polynomials’ zero-sets, and therefore, a set of measure zero. To use this result to solve
the general case (that is, without the probabilistic assumption), we could add a random perturbation to the
p,w parameters and thereby be confident that the solution is unique, while showing that if the perturbation
is sufficiently small, it won’t affect the optimality of the solution found. There are substantial hurdles to
implementing this approach: in particular, even rather sophisticated arguments suggest that the bounds on the
perturbation will require a polynomial number of bits per input parameter, which would lead to substantially
slower algorithms. Fortunately, there is an easier way of doing that without adding random noise.

Theorem 6 states that the cut with the fewest nodes in the source side always produces a feasible sched-
ule. This cut is actually very simple to compute: given a max-flow in the graph, this cut is the set of reachable
nodes from the source in the residual graph. The main ingredient of this proof is that the set of all minimum
(s, t)-cuts in a graph form a laminar family, which means that if(S1, T1) and(S2, T2) are minimum(s, t)-
cuts then(S1 ∩ S2, T1 ∪ T2) and(S1 ∪ S2, T1 ∩ T2) are also. This means that ifS is the set of reachable
nodes from the source in the residual graph in a max-flow, thenS ⊆ S′ for all min-cuts(S′, T ′).

Proof of Theorem 6 : Suppose the minimum-cardinality miniumum-cut corresponds to a solutionδ with a
violated Potts triple(i, j, k). Supposei < j < k; thenδij = δjk = 1 andδik = 0, i.e.,δij andδjk are on the
source side of the cut, andδik is on the sink side. Using Theorem 8, there is one min-cut represented byδk

whereδij = 0, i.e.,δij is in the sink-side of the min-cut, which is a contradiction:since it is in the smallest
possible min-cut, it must be on the source side of all min-cuts. If i < k < j, then the proof is analogous.

References

[1] C. Ambühl and M. Mastrolilli. Single machine precedence constrained scheduling is a vertex cover
problem. InESA, pages 28–39, 2006.

[2] C. Ambuhl, M. Mastrolilli, and O. Svensson. Inapproximability results for sparsest cut, optimal linear
arrangement, and precedence constrained scheduling. InFOCS ’07: Proceedings of the 48th Annual

11

IEEE Symposium on Foundations of Computer Science, pages 329–337, Washington, DC, USA, 2007.
IEEE Computer Society.

[3] N. Bansal and S. Khot. Optimal long code test with one freebit. In FOCS, 2009.

[4] F. Chudak and D. Hochbaum. A half-integral linear programming relaxation for scheduling
precedence-constrained jobs on a single machine.Oper. Res. Lett., 25:199–204, 1999.

[5] J. R. Correa and A. S. Schulz. Single-machine schedulingwith precedence constraints.Math. Oper.
Res., 30(4):1005–1021, 2005.

[6] B. Dushnik and E. W. Miller. Partially ordered sets.Amer. J. Math., 63:600–610, 1941.

[7] W. Eastman, S. Even, and I. Isaacs. Bounds for the optimalscheduling of n jobs on m processors.
Management Science, 11:268–279, 1964.

[8] M. X. Goemans and D. Williamson. Two-dimensional gantt charts and a scheduling algorithm of
lawler. InSODA: ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999.

[9] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-ǫ. J. Comput. Syst. Sci.,
74(3):335–349, 2008.

[10] E. Lawler, M. Queyranne, A. Schulz, and D. Shmoys. Weighted sum of completion times. In J. Lenstra
and D. Shmoys, editors,Scheduling. To appear.

[11] E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence
constraints.Ann. Discrete Math., 2:75–90, 1978.

[12] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence constraints.
Oper. Res., 26:22–35, 1978.

[13] F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows, and a precedence constrained
single-machine scheduling problem.Oper. Res., 51(6):981–992, 2003.

[14] C. N. Potts. An algorithm for the single machine sequencing problem with precedence constraints.
Math. Programming Stud., 13:78–87, 1980.

[15] M. Queyranne and Y. Wang. Single-machine scheduling polyhedra with precedence constraints.Math.
Oper. Res., 16(1):1–20, 1991.

[16] J. B. Sidney. Decomposition algorithms for single machine scheduling with precedence relations and
deferral costs.Oper. Res., 23:283–298, 1978.

[17] W. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3:59–
66, 1956.

12

