
Jointly Learning Prices and Product Features

Ehsan Emamjomeh-Zadeh ∗, Renato Paes Leme †, Jon Schneider ‡, Balasubramanian Sivan §

Abstract

Product Design is an important problem in market-
ing research where a firm tries to learn what fea-
tures of a product are more valuable to consumers.
We study this problem from the viewpoint of online
learning: a firm repeatedly interacts with a buyer by
choosing a product configuration as well as a price
and observing the buyer’s purchasing decision. The
goal of the firm is to maximize revenue through-
out the course of T rounds by learning the buyer’s
preferences. We study both the case of a set of dis-
crete products and the case of a continuous set of
allowable product features. In both cases we pro-
vide nearly tight upper and lower regret bounds.

1 Introduction
In “The Ketchup Conundrum” [Gladwell, 2004] Malcolm
Gladwell describes the history of market research in the food
industry and the sophisticated scientific techniques used by
companies like Campbell Soup and Pepsi to optimize their
products to the taste of customers. In his tale about mus-
tard, Gladwell describes how the mustard brand Grey Poupon
dominated the market in the 1980s and was able to charge
more than twice the price of its competitors by understand-
ing the properties of mustard that were most desired by the
market and offering a mustard product that was substantially
different from its competitors.

Pricing is an important component of revenue optimiza-
tion, but one equally important component is to optimize the
product being offered to increase its value to consumers: How
sweet should soda be? How big should the fonts be in a web-
site to maximize engagement? What color of orange juice
is the best to boost sales? Often, the design space is quite
complex. Gladwell describes the design space of pasta sauce
as follows: “These were designed to differ in every conceiv-
able way: spiciness, sweetness, tartness, saltiness, thickness,
aroma, mouth feel, cost of ingredients, and so forth.”

∗Facebook Research, ehsanez@fb.com
†Google Research, renatoppl@google.com
‡Google Research, jschnei@google.com
§Google Research, balusivan@google.com

In this paper we explore the question of optimizing rev-
enue by optimizing both the pricing policy and the features
of the product itself. We look at this question from the view-
point of online learning, or more specifically, online con-
textual pricing. In contextual pricing a seller is presented
with differentiated products represented by feature vectors
and then proceed to sell them adaptively. When deciding on
a price to sell each product, the seller faces a trade-off usu-
ally referred as learn/earn: lower prices are more likely to
sell and guarantee revenue but more aggressive prices will al-
low the seller to learn more about the buyer’s value and this
knowledge can boost future revenues. There has been a lot
of activity on contextual pricing recently [Amin et al., 2014;
Bastani and Bayati, 2016; Cohen et al., 2016; Javanmard
and Nazerzadeh, 2016; Lobel et al., 2017; Javanmard, 2017;
Leme and Schneider, 2018; Mao et al., 2018; Liu et al., 2020]
but in all those papers the seller optimizes the pricing strategy
with no control of which products he is selling.

In our model, we assume that there is a space X ⊆ Rd of
products that can be offered by the firm represented by feature
vectors, e.g. X is the set of all the potential flavors of pasta
sauce that can be produced and the features correspond to
things like spiciness, sweetness, tartness, etc. The seller then
repeatedly interacts with a buyer with valuation function ν :
X → R by choosing a product xt ∈ X to offer and a price pt
and observes whether the buyer purchases the product (pt ≤
ν(xt)) or not (pt > ν(xt)). The buyer is here assumed to be
myopic and have a fixed valuation.

The learning task we consider is to optimize the revenue
achieved by the seller while learning. Formally, we minimize
regret during a course of T rounds defined as the difference
between the seller’s revenue and the best possible revenue in
T rounds that can be extracted if the seller knew ν.

Our Results We start by studying the case where there are
d independent products, e.g., X = {e1, . . . , ed} where ei the
i-th vector in the standard basis for Rd. The simplest algo-
rithm for this problem is to do binary search to determine
the value of each item within 1/T precision and then offer
the highest value product at the lower estimate. The total re-
gret in this approach is O(d log T). Using a surprising idea
by [Kirkpatrick and Gao, 1990] it is possible to identify the
best product together with its value with only O(d + log T)
queries. We also show that, using a different algorithm, we
can exponentially improve the dependence on T . More pre-

cisely, we obtain a regret bound ofO(d log log T) using a par-
allelized version of the algorithm of [Kleinberg and Leighton,
2003] for a single item. Since our benchmark is the value of
the best product, it is not enough to run separate instances of
Kleinberg and Leighton’s algorithm for each product. Instead
we need to synchronize different instances to make sure the
regret bounds are valid across products.

While our upper bound results are relatively straightfor-
ward applications/extensions of existing algorithms, our main
question is whether one can do better. Namely, given that it
is possible to obtain regret O(d log log T) and O(d+ log T),
it is natural to ask whether it is possible to obtain the best
qualities of both bounds: a log log dependency on T and an
additive dependency on d. In other words, isO(d+log log T)
achievable for this problem? We answer this in the negative.

Our main result and technical contribution is a lower bound
on regret showing that if T = 22

d

, then any deterministic
algorithm must incur Ω(d2/ log d) regret. In other words, for
large T the parallel version of Kleinberg-Leighton is optimal
up to log factors. The construction for the lower bound is
quite intricate.

In the second part of the paper, we consider a general set
X ⊆ Rd. We assume that we have an oracle that given
a direction v ∈ Rd, we can efficiently compute a point
in argmaxx∈X 〈x, v〉 and obtain an algorithm with regret
O(d log d log log T). We obtain this result by a reduction to
the Contextual Pricing problem [Leme and Schneider, 2018;
Liu et al., 2020].

1.1 Related Work
Product Design is a formulation of a traditional problem
in marketing research from the perspective of online learn-
ing. A large body of literature in marketing has been ded-
icated to developing techniques to understand the prefer-
ences of consumers. Particularly close to our problem is
the technique known as cojoint analysis [Green and Srini-
vasan, 1978]. The goal of this technique is to design sur-
veys to be sent to consumers and analyze those in order
to infer what product attributes are more influential in pur-
chase decisions. We refer to the excellent paper by Toubia,
Hauser and Simester [Toubia et al., 2004] as a great in-
troduction to the field. Methods for cojoint analysis have
been derived from polyhedral techniques [Toubia et al., 2004;
Toubia et al., 2003], convex programming [Evgeniou et al.,
2007], statistics [Ding et al., 2005] and more recently ma-
chine learning [Chapelle and Harchaoui, 2005; Viappiani and
Boutilier, 2010].

We depart from this line of literature in two major ways:
(i) we focus on revenue and on the tradeoffs between learn-
ing and earning, while the traditional focus of marketing has
been in learning the weights that consumers attribute to each
feature; (ii) our methodological approach is rooted in online
learning: we have clearly specified loss functions and obtain
provable guarantees on what is achievable for such loss func-
tions.

Our methodological approach is closely related to the lit-
erature on contextual pricing, in which differentiated prod-
ucts are presented to a seller who then chooses a price based
on the observable features of the product. Different tech-

niques have been applied to this problem leading to differ-
ent regret bounds: stochastic gradient descent [Amin et al.,
2014], statistical learning [Bastani and Bayati, 2016; Javan-
mard and Nazerzadeh, 2016; Javanmard, 2017], iterative par-
tition refinement [Mao et al., 2018] and high-dimensional
convex geometry [Cohen et al., 2016; Lobel et al., 2017;
Leme and Schneider, 2018]. We differ from this line of work
both in the benchmark against which we compute regret and
more importantly in the decision variable. While in contex-
tual pricing the decision maker is only asked to choose a price
in each step, in our setting we choose a price and a product
configuration.

2 Problem Definition
Product Design is an online decision making problem in
which a firm repeatedly interacts with a buyer to sell an item
from a fix set of items. The firm knows the set of products
that it is capable of producing. This set of products will be
represented by a set X ⊆ Rd where each product x ∈ X is
identified by a set of d features. The buyer’s value for each
product is given by a function ν : X → R that is fixed but
unknown to the firm.

At every period t = 1, 2, . . . , T , the firm chooses a product
xt together with a price pt and offers xt at price pt to the
buyer. The buyer accepts the offer if pt ≤ ν(xt) and rejects
otherwise. The goal of the firm is to minimize its regret with
respect to the maximum obtainable revenue, which is: T ·
maxx∈X ν(x). Formally,

Regret = T ·max
x∈X

ν(x)−
T∑
t=1

pt · 1{pt ≤ ν(xt)}

We will make the common assumption that the function
ν(x) is linear in the feature space, i.e., ν(x) = 〈v, x〉 for a
certain vector v ∈ Rd. To fix the scale of the problem we will
also assume that ‖v‖2 ≤ 1. As usual, this can be general-
ized to more complex functions by mapping the features to a
different space1.

First we consider the case of Independent Products in
which X = {e1, . . . , ed} and ei is the i-th coordinate vec-
tor. In this case what we learn fro pricing a certain product
says nothing about the value of the buyer for other products.
Next we consider General Products in which X is an arbi-
trary set with ‖x‖2 ≤ 1,∀x ∈ X for which we have an oracle
that returns argmaxx∈X 〈v, x〉 for any v ∈ Rd.

A natural algorithm is to try to find the best product as fast
as possible and the price it at its lower estimate.
Lemma 1. If it is possible to find a pair (x̂, ν̂) such that

ν∗ − ε ≤ ν̂ ≤ ν(x̂) ≤ ν∗ where ν∗ = max
x∈X

ν(x)

in f(ε) iterations, then it is possible to obtain an 1 + f(1/T)
regret algorithm for Product Design.

1In particular, this is easily generalizable to any functions of
the form ν(x) = f(〈φ(x), v〉) for φ : Rd → Rd′ and f :
R → R. Those include polynomials in x, logistic regression
v = [1+exp(〈v, x〉)]−1, the log-log model log v =

∑
i vi log(xi),

the semilog model log v =
∑

i vixi, among others.

Proof. Use the first f(1/T) iterations to obtain a pair (x̂, ν̂)
incurring regret at most f(1/T). From this point on, choose
(x̂, ν̂) in all remaining steps, always having the offer accepted
and incurring regret at most T · (ν∗ − ν(x̂)) ≤ T · 1/T =
1.

In many cases, however, it is possible to obtain exponen-
tially better regret for Product Design than what is possible to
obtain via a direct reduction to Product Finding.

3 Independent Products
In this section we explore algorithms for the Product Design
problem when there are d “independent” products such that
the value of any subset of products does not reveal any in-
formation about any other product. In the language of this
paper, one can assume that the products are (for example) the
d unit vectors in the standard basis of Rd. We derive both up-
per bounds (relatively straightforward extensions) and lower
bound (main result, involved) on the regret.

3.1 Upper Bounds
One naive approach to this problem is to estimate the value
of each product to within 1/T additive error in log T rounds
(using a binary search), and after that, always sell the (ap-
proximately) best product at its estimated price. Because it
takes d log T rounds to approximate the value of each item,
this algorithm achieves a regret of d log T + 1. We present
two algorithms which improve on this upper bound in incom-
parable ways: one achieves regret O(d log log T) while the
other one achieves an upper bound of O(d+ log T).

We begin by showing how to get O(d log log T) total re-
gret by parallelizing an algorithm of Kleinberg and Leighton
[Kleinberg and Leighton, 2003] which achieves a regret up-
per bound of O(log log T) for a single item.

Kleinberg-Leighton (KL) Algorithm for One Item
In the KL setting, there is only one item, and the buyer has
a fixed unknown value v∗ ∈ [0, 1] for this item. Within
a course of T rounds, the algorithm chooses a price pt in
each round t, and observes whether the offer is accepted
(pt ≤ v) or not (pt > v). The regret is defined as Regret =

Tv −
∑T
t=1 pt · 1[pt ≤ v]. We describe the KL algorithm

and the proof of the regret it obtains in the supplement for
completeness. The main takeaway we need from the KL al-
gorithm is that it obtains a regret of O(log log T).

First Algorithm: Parallelization of the
Kleinberg-Leighton Algorithm
We now show how we generalize this algorithm for d inde-
pendent items X = {e1, . . . , ed}. A naive idea is to run the
KL algorithm on each item individually until we find its ap-
proximate value and then offer the best item for the rest of the
rounds. This approach incurs linear regret since the bench-
mark is the value of top item and any accepted offer for a
suboptimal item generates regret at least equal to its differ-
ence compared to the optimal item.

Instead, we run the KL algorithm for all items in lockstep.
To be precise, we keep a set S of item that are alive, initially

containing all items. We also keep an instance of the (single-
item) KL algorithm which we will use as a black-box. The
algorithm will proceed in phases. Each phase will correspond
to one step of the black-box KL algorithm which will corre-
spond to |S| price offerings in the actual algorithm. In each
phase s, we get a price ps from the KL black-box and offer
this price to each item in S. Then we proceed as follows:

• If all offers are rejected, we feed the KL algorithm with
“rejected” and move to the next phase without changing
S.

• If at least one offer is accepted, we feed the KL al-
gorithm with “accepted”, remove from S all items for
which the offers were rejected and proceed to the next
phase.

Theorem 2. The parallelized KL algorithm achieves
O(d log log T) total regret on the Product Design problem
with independent items.

We prove Theorem 2 in the online supplement.

Second Algorithm: Binary Search Based Algorithm
The second algorithm is based on a clever procedure by Kirk-
patrick and Gao [Kirkpatrick and Gao, 1990]. Their al-
gorithm considers the following problem: given d integers
x1, . . . , xd between 1 and n we want to determine maxi xi
using only queries of the type xi ≥ p. Their algorithm finds
the maximum in O(d + log n) steps. This is essentially the
Product Finding problem for independent product and their
algorithm automatically implies a O(d + log(1/ε)) mistake
bound, which translates to anO(d+log(T)) regret bound for
Product Design via Lemma 1. We sketch the idea behind the
algorithm of Kirkpatrick and Gao in the supplement.

3.2 Lower Bound
In the previous section we demonstrated algorithms for the
Product Design problem which achieve regret O(d log log T)
andO(d+log T) respectively. Given these two upper bounds,
a natural question is whether it is possible to obtain the best
properties of both bounds, i.e., an algorithm that achieves a
regret of O(d + log log T). In this section we show that a
O(d + log log T) bound is not achievable by any determin-
istic algorithm: we show this by considering a setting with d
products, T = 22

d

and showing that any deterministic algo-
rithm must incur Ω(d2/ log d) regret. This is the main result
of the paper and goes through an involved construction.

We establish some facts about arbitrary deterministic
algorithms for the Product Design problem in the form of
Lemmas 3 and 4. Since regret is additive, we focus on the
case where all values are in [1, 2] for the lower bound (unlike
the upper bound sections where we focused on values in
[0, 1]).

Deterministic algorithms as binary trees. A determin-
istic algorithm for the Product Design problem is simply
a sequence of queries of the form “is v(xi) ≥ p?”, where
each query is possibly dependent on the sequence of queries
previously asked and responses received (where the i and p
are decided by the algorithm). This is readily portrayed as a

binary tree. Each non-leaf node of this binary tree represents
the query (i.e. the pair (i, p)), and every such node has at
least one and at most two child edges: YES and NO2. Every
path in this tree is an execution of this algorithm on a given
input instance. Note that two instances which are sufficiently
close could result in the same path being realized, but a given
input instance results in a unique path in this binary tree.

Adversary’s task. The adversary’s task is to construct
an input instance with regret Ω(d2/ log d). Note that the
adversary has full knowledge of the algorithm, i.e., the binary
tree. Thus adversary’s task boils down to the following: for
every binary tree that represents an algorithm, picking a path
from root to leaf with resulting regret Ω(d2/ log d).

Node labeling in the binary tree. Each node v in
the binary tree is naturally labeled as an (n + 1)-tuple
(a(v), b1(v), b2(v), . . . , bn(v)), where a(v) is the maximum
price for which we have gotten a YES response so far before
querying node v and bi is the minimum price at which we
have gotten a NO response for item i before querying node v.
Whenever bi(v) < a(v), we will set bi(v) = ∅, representing
that item i can no longer be the most valuable item. The
label summarizes all the relevant information obtained from
the queries asked so far. Without loss of generality we only
focus on algorithms that query an item i with bi(v) 6= ∅ (for
algorithms that do query such null items i, the adversary
can simply answer in any manner that is not inconsistent
with previous answers; the algorithm only wastes regret by
making such queries).

For any deterministic algorithm A, we let Reg(A) denote
the worst-case regret ofA over T rounds. The following lem-
mas provide constraints on any protocol with low regret.

Lemma 3 (NO edges). In any length T (or lesser) path in
a deterministic algorithm A’s binary tree, the number of NO
edges is at most Reg(A).

Proof. Consider any problem instance whose execution re-
sults in the path at hand. Each NO query contributes 1 to
algorithm A’s regret (since the lowest value is 1), so the total
number of NO queries is at most Reg(A).

Lemma 4 (Large-gap nodes). In any length T (or lesser) path
in a deterministic algorithm A’s binary tree, for any d > 0
the number of nodes v where maxi bi(v) − a(v) ≥ d is at
most Reg(A)/d.

Proof. Suppose there exists a path with strictly more than
Reg(A)/d nodes v with maxi bi(v) − a(v) ≥ d. Consider
the last node in the path (i.e, the node farthest from the root
in that path) and let (a∗, b∗1, . . . , b

∗
n) be this node’s label. For

every earlier node v in this path a(v) ≤ a∗ and bi(v) ≥ b∗i .

2Sometimes there need not be two child edges because one of
YES or NO answers is inconsistent given the responses received so
far. For example if v(x2) >= 5 was received from an earlier query
and the latter question is whether v(x2) >= 4, the answer has to
always be YES.

At this point the adversary could, without contradicting any
of the responses it gave earlier, set maxi b

∗
i to be the value of

the maximum valued item. In this case, every previous query
where the answer was a NO resulted in regret of maxi b

∗
i and

every previous query where YES was the answer resulted in
regret of maxi b

∗
i − a(v) ≥ maxi b

∗
i − a∗ ≥ d. Thus the to-

tal regret is at least d times the number of “large-gap nodes”,
i.e., nodes v in the path where the gap maxi bi(v) − a(v)
strictly exceeds Reg(A)/d. This contradicts A’s regret to be
Reg(A).

Adversarial instance construction. As discussed before,
we set T = 22

d

. We show that given any determinis-
tic algorithm A’s binary tree, the adversary can construct
an instance, i.e., a path in the binary tree, with total re-
gret at least Ω(d2/ log d) (whereas an algorithm with regret
O(d + log log T) would incur at most O(d) regret). The ad-
versary constructs this path by constructing and concatenat-
ing many smaller paths, which we refer to as small-paths.
In particular, assume to the contrary that Reg(A) < R =

d d2

8 log(d+2)e = O(d2/ log d). We construct R small paths,
each with exactly one NO edge, resulting in a total regret of
at least R, contradicting the fact that Reg(A) < R. To keep
track of the progress made so far, we annotate each node with
a triple that captures a relevant summary of the history so far.

Definition 5 (Summary triple). A node v in an algorithm’s
binary tree is (d1, d2, k)-bounded if both:

1. mini bi(v)− a(v) ≥ d1.

2. for at least k different indices i s.t., bi(v)−a(v) ≥ d1 +
d2.

By definition 5, the root node where a = 1 and bi = 2
for all i is (1, 0, 0) bounded. We now establish two important
small-path constructing mechanisms for the adversary. By
stringing together these two constructions, we show that the
total path length is at most T consisting ofR small-paths with
each having exactly one NO edge, leading to a regret of at
least R.

Lemma 6 (Small-path construction Case-1). Starting from a
node v that is (d1, d2, k)-bounded with k > 0, the adversary
is always able to find a small-path between v and v′ of length
R
d2

such that v′ is (d1d2R , d2, k − 1)-bounded.

Proof. Let L = R
d2

. We assume L is an integer because our
invocation of this lemma will involve 1

d2
always being an in-

teger, and R is an integer by definition. Let v = v0 be the
current node with label (a(v0), b1(v0), . . . , bn(v0)) . The ad-
versary constructs the small-path as follows. Let v1, v2, . . .
be the nodes encountered by the adversary when it proceeds
as specified below, and let q(vi) be the price the algorithm
asks at node vi. For notation consistency let q(v−1) = a(v0).

1. At node vi: for queries that have q(vi)− q(vi−1) < d1
L ,

the adversary answers YES.

2. At node vi: for queries that have q(vi) − q(vi−1) ≥ d1
L

the adversary answers NO and immediately terminates
the small-path after the first NO answer.

Without loss of generality, we will assume that q(vj) ≥
q(vj−1), i.e. that the algorithm never asks a price lower than
a previous YES query. (If the algorithm does so, we just pre-
tend that the algorithm asked q(vj) = q(vj−1) for the purpose
of analysis.)

We claim that for at least one j ∈ {1, . . . , L}, we have
q(vj) − q(vj−1) ≥ d1

L . If not we have would have had L
large-gap nodes v1, . . . , vL where for each vj , maxi bi(vj)−
a(vj) ≥ d2 where as by Lemma 4 the number of large-gap
nodes with gap d2 should be at most Reg(A)

d2
< R

d2
= L.

Let j∗ be the smallest j at which q(vj) − q(vj−1) ≥ d1
L ,

and thus our v′ is vj∗ . In fact, min (q(vj∗), a(v0) + d1) −
q(vj∗−1) ≥ d1

L
From here, it is straightforward to see why v′ is

(d1d2R , d2, k − 1)-bounded. For d′1 note that:

min
i
bi(vj∗)−a(vj∗) ≥ a(v0)+d1−q(vj∗−1) ≥ d1

L
=
d1d2
R

Since there was exactly one NO answer, at most one bi de-
creased. Also a(vj∗) + d1/L ≤ a(v0) + d1. Thus at the
same value of d′2 = d2 we have k decreasing by one, giving
k′ = k − 1.

Lemma 7 (Small-path construction Case-2). Starting from a
node that is (d1, d2, k)-bounded with k = 0, the adversary is
always able to find a small-path between v and v′ of length
2R
d1

such that v′ is (
d21
4R ,

d1
2 , d− 1)-bounded.

Proof. We proceed similarly as in case 1, Lemma 6. Let
L = 2R

d1
. We assume L is an integer because our invocation

of this lemma will involve 1
d1

always being an integer, and R
is an integer by definition. Let v = v0 be the current node
with label (a(v0), b1(v0), . . . , bn(v0)) . The adversary con-
structs the small-path as follows. Let v1, v2, . . . be the nodes
encountered by the adversary when it proceeds as specified
below, and let q(vi) be the price the algorithm asks at node
vi. Let again q(v−1) = a(v0) for notation consistency.

1. At node vi: for queries that have q(vi)− q(vi−1) < d1
2L ,

the adversary answers YES.

2. At node vi: for queries that have q(vi) − q(vi−1) ≥ d1
2L

the adversary answers NO and immediately terminates
the small-path after the first NO answer.

We again focus on the case where q(vj) ≥ q(vj−1), pretend-
ing q(vj) = q(vj−1) whenever q(vj) < q(vj−1).

We claim that for at least one j ∈ {1, . . . , L}, we have
q(vj) − q(vj−1) ≥ d1

2L . If not we have would have had L
large-gap nodes v1, . . . , vL where for each vj , maxi bi(vj)−
a(vj) ≥ d1

2 where as by Lemma 4 the number of large-gap
nodes with gap d1

2 should be at most 2Reg(A)
d1

< 2R
d1

= L.

Let j∗ be the smallest j at which q(vj) − q(vj−1) ≥ d1
2L ,

and thus our v′ is vj∗ . Since a(v0) + d1
2 − a(v0) ≥ d1

2 , we
have min

(
q(vj∗), a(v0) + d1

2

)
− q(vj∗−1) ≥ d1

2L .

From here, it is straightforward to see why v′ is
(
d21
4R ,

d1
2 , d− 1)-bounded since:

min
i
bi(vj∗)−a(vj∗) ≥ a(v0)+

d1
2
−q(vj∗−1) ≥ d1

2L
=

d21
4R

Since there was exactly one NO answer, at most one bi de-
creased, and thus while all other bi’s are at least a(v0) + d1
and hence:

bi ≥ a(v0) + d1 ≥ a(v0) +
d1
2

+
d1
2
≥ a(vj∗) +

d21
4R

+
d1
2

We are now ready to prove the main lower bound.

Theorem 8. No deterministic algorithm for the Product De-
sign problem with independent items can achieve a regret of
O(d+ log log T).

Proof. Recap: As discussed earlier, set T = 22
d

. We show
that for any deterministic algorithm A, there is an instance of
the Product Design problem where they must incur at least
Ω(d2/ log d) total regret (whereas an algorithm with regret
O(d + log log T) would incur at most O(d) regret). The ad-
versary constructs this path by constructing and concatenat-
ing many smaller paths, which we refer to as small-paths.
In particular, assume to the contrary that Reg(A) < R =

d2

8 log(d+2) = O(d2/ log d). We construct R small paths, each
with exactly one NO edge, resulting in a total regret of at least
R, contradicting the fact that Reg(A) < R.

We start at the root node which is (1, 0, 0)-bounded and
construct R small-paths as follows:

• Construct a Case-2 small-path, i.e. apply Lemma 7 once.

• Construct d − 1 Case-1 small-paths in succession, i.e.,
d− 1 consecutive applications of Lemma 6.

• Repeat until R paths are constructed

It is easy to verify that conditions applicable for applying
the respective lemmas are met. In particular, after every d
small-paths constructed, we have k = 0 making it fit to in-
voke Case-2 Lemma 7, and for the next d−1 rounds we have
k decreasing by one from d − 1 to 0 making it fit to invoke
Lemma 6. Also note that whenever we invoke Lemma 6 we
have d2 = 1

2r for some non-negative integer r, making 1
d2

integral, and thus making the R
d2

used in Lemma 6 integral.
Similarly 1

d1
is always integral when we invoke Lemma 7,

making 2R
d1

used in that lemma integral (d1 is 1 at the first
invocation of Lemma 7, and at the subsequent i-th invocation

it will be of the form R ·
(

1
2R

)(d+1)i · 2− d+1
d ·[(d+1)i−1−1].

Note that after every d paths contructed by the adversary,
the state summary changes

(d1, d2, 0)→

(
R

(
d1
2R

)d+1

,
d1
2
, 0

)

Each such “cycle” (i.e., d consecutive paths) has a total path
length of 2R

d1
+ (d − 1) Rd2 = 2Rd

d1
, because d2 = d1/2 here.

So the total length of all the paths when we complete η cycles
is:

lengthη = 2Rd+

η−1∑
i=1

2Rd

R · (1
2R)(d+1)i · 2− d+1

d ·[(d+1)i−1−1]

≤ 2Rdη(4R)(d+1)η−1

.
(1)

We claim that when η = R
d = d

8 log(d+2) , the RHS above

namely 2Rdη(4R)(d+1)η−1

is at most T = 22
d

. To see this,
the logarithm of the upper bound in (1) is given by

log(lengthη) ≤ log(2Rdη) + (d+ 1)η−1 log(4R)

≤ log(2d4) + (d+ 1)η−1 log(4d2)

≤ 5 log d+ 2(d+ 1)η−1 log d ≤ (d+ 1)η

= 2η log(d+1) = 2d/8 ≤ 2d = log(T),

where we used the fact that d is large enough in a few in-
equalities. It follows that the total length of our feasible path
was at most T and it has at least R no edges because of R
small-paths with one NO edge each, thus violating Lemma 3
and contradicting our assumption that Regret(A) < R.

4 General Products
Finally, we study the Product Design problem for a generic
set X ⊆ Rd. We will solve this by a reduction to a contextual
learning problem. Contextual pricing is an online decision
making problem very similar to ours with two major differ-
ences: the products to be sold in each iteration are chosen by
an adversary and the regret is computed with respect to the
value of products chosen. Formally, there is a fixed unknown
valuation v ∈ Rd, ‖v‖2 ≤ 1. In each iteration an adversary
chooses a product xt ∈ Rd, ‖xt‖ ≤ 1 and the decision maker
then chooses a price pt. After choosing the price, the deci-
sion maker learns whether pt ≤ 〈v, xt〉 or not. The regret of
contextual pricing is given by:

RegretCP =
∑
t

〈v, xt〉 − pt · 1{pt ≤ 〈v, xt〉}

Note that the benchmark in Contextual Pricing is∑
t 〈v, xt〉 while the benchmark in Product Design is T ·

maxx∈X 〈v, x〉. The algorithms in [Cohen et al., 2016;
Lobel et al., 2017; Leme and Schneider, 2018; Liu et al.,
2020] provide a gurantee with respect to a stronger bench-
mark, which is based on the notion of the width of the knowl-
edge set. The knowledge set is the set of all values v̂ that
are consistent with the observations so far. To be precise, if
σt ∈ {−1,+1} corresponds to the feedback at time t (i.e.
σt = +1 if pt ≤ 〈v, xt〉 and σt = −1 otherwise) then the
knowledge set is given by:

Kt = {v̂ ∈ Rd; ‖v̂‖2 ≤ 1 and
στ · (pτ − 〈v̂, xτ 〉) ≤ 0 for τ = 1...t− 1}

Given a certain vector x ∈ Rd we define the width of the
knowledge set in direction x as:

width(Kt, x) = max
v̂∈Kt

〈v̂, x〉 − min
v̂∈Kt

〈v̂, x〉

Using those notions we can define an upper bound on the
Contextual Pricing regret, which we call width-based regret:

WRegretCP =
∑
t

1{σt = −1}+1{σt = +1}·width(Kt, xt)

A contextual pricing algorithm is reasonable if pt ≥ pt :=

minv̂∈Kt 〈xt, v̂〉 since the price p
t

is always guaranteed to
sell. For any reasonable algorithm, the following bound
holds: RegretCP ≤ WRegretCP since the regret in a no-
sale event can always be upper bounded by 1 and the re-
gret of a sale can always be bounded by 〈v, xt〉 − pt ≤
maxv̂∈Kt 〈v̂, xt〉 −minv̂∈Kt 〈xt, v̂〉 = width(Kt, xt).

We say that an algorithm has width-based regret R if
WRegretCP ≤ R. We note that all the algorithms we have
referenced obtain regret bounds by bounding the width-based
regret. In particular, the result of Liu, Paes Leme, and Schnei-
der implies that:
Theorem 9. There is a reasonable algorithm for contextual
pricing such that WRegretCP ≤ O(d log d log log T).

We now use that result to obtain an algorithm for Product
Design with the same regret:
Theorem 10. Given a reasonable algorithm for contextual
pricing with width-based regret R, it is possible to obtain an
algorithm for Product Design with regret R.

Proof. Design an algorithm as follows: in period t, find
(xt, v̂) ∈ argmaxx∈X,v̂∈Kt 〈xt, v̂〉 and feed xt to the Con-
textual Pricing algorithm and obtain pt. Now, feed (xt, pt) to
the Product Design algorithm.

To show that the regret of the product discovery in at
most WRegretCP observe that in the case of a no-sale the re-
gret incurred is maxx∈X 〈v, x〉 which is at most 1 which is
the amount attributed to a no-sale event by WRegretCP. In
the case of a sale, the regret incurred is maxx∈X 〈v, x〉 −
pt. Note that maxx∈X 〈v, x〉 ≤ maxx∈X,v̂∈Kt 〈v̂, x〉 =
maxv̂∈Kt 〈v̂, xt〉 and pt ≥ minv̂∈Kt 〈v̂, xt〉 since the contex-
tual pricing algorithm is reasonable, therefore, the regret in-
curred by product discovery is at most width(Kt, xt). Putting
it all together:

Regret ≤WRegretCP ≤ R

Corollary 11. There is a O(d log d log log T) regret algo-
rithm for Product Design for general product sets X .

Although the Contextual Pricing algorithm of [Liu et al.,
2020] is a polynomial-time algorithm, we rely on an NP-hard
problem to choose the product xt in each step. Given two
convex sets K1,K2, finding the pair of point that maximizes
the dot product maxx1∈K1,x2∈K2 〈x1, x2〉 is NP-hard. When
K1 = K2 this becomes the maximum-norm problem that was
shown to be NP-hard by Bodlaender et al [Bodlaender et al.,
1990]. We leave as an open problem how to obtain this regret
guarantee in polynomial-time for a generic X having access
to an oracle that for every v̂ returns x̂ ∈ argmaxx∈X 〈x, v̂〉.

References
[Amin et al., 2014] Kareem Amin, Afshin Rostamizadeh,

and Umar Syed. Repeated contextual auctions with strate-
gic buyers. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 622–630, 2014.

[Bastani and Bayati, 2016] Hamsa Bastani and Mohsen Bay-
ati. Online decision-making with high-dimensional covari-
ates. Working paper, Stanford University, 2016.

[Bodlaender et al., 1990] Hans L. Bodlaender, Peter Gritz-
mann, Victor Klee, and Jan Van Leeuwen. Computa-
tional complexity of norm-maximization. Combinatorica,
10(2):203–225, 1990.

[Chapelle and Harchaoui, 2005] Olivier Chapelle and Zaid
Harchaoui. A machine learning approach to conjoint anal-
ysis. In Advances in neural information processing sys-
tems, pages 257–264, 2005.

[Cohen et al., 2016] Maxime C Cohen, Ilan Lobel, and Re-
nato Paes Leme. Feature-based dynamic pricing. In Pro-
ceedings of the 2016 ACM Conference on Economics and
Computation, pages 817–817. ACM, 2016.

[Ding et al., 2005] Min Ding, Rajdeep Grewal, and John
Liechty. Incentive-aligned conjoint analysis. Journal of
marketing research, 42(1):67–82, 2005.

[Evgeniou et al., 2007] Theodoros Evgeniou, Massimiliano
Pontil, and Olivier Toubia. A convex optimization ap-
proach to modeling consumer heterogeneity in conjoint es-
timation. Marketing Science, 26(6):805–818, 2007.

[Gladwell, 2004] Malcolm Gladwell. The ketchup conun-
drum. The New Yorker, 2004.

[Green and Srinivasan, 1978] Paul E Green and Venkat-
achary Srinivasan. Conjoint analysis in consumer re-
search: issues and outlook. Journal of consumer research,
5(2):103–123, 1978.

[Javanmard and Nazerzadeh, 2016] Adel Javanmard and
Hamid Nazerzadeh. Dynamic pricing in high-dimensions.
Working paper, University of Southern California, 2016.

[Javanmard, 2017] Adel Javanmard. Perishability of data:
dynamic pricing under varying-coefficient models. The

Journal of Machine Learning Research, 18(1):1714–1744,
2017.

[Kirkpatrick and Gao, 1990] David G Kirkpatrick and Feng
Gao. Finding extrema with unary predicates. In Interna-
tional Symposium on Algorithms (SIGAL), pages 156–164.
Springer, 1990.

[Kleinberg and Leighton, 2003] Robert Kleinberg and Tom
Leighton. The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In Founda-
tions of Computer Science, 2003. Proceedings. 44th An-
nual IEEE Symposium on, pages 594–605. IEEE, 2003.

[Leme and Schneider, 2018] Renato Paes Leme and Jon
Schneider. Contextual search via intrinsic volumes. In
59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 268–282, 2018.

[Liu et al., 2020] Allen Liu, Renato Paes Leme, and Jon
Schneider. Contextual search for general hypothesis
classes. arXiv preprint arXiv:2003.01703, 2020.

[Lobel et al., 2017] Ilan Lobel, Renato Paes Leme, and
Adrian Vladu. Multidimensional binary search for con-
textual decision-making. Operations Research, 2017.

[Mao et al., 2018] Jieming Mao, Renato Paes Leme, and Jon
Schneider. Contextual pricing for lipschitz buyers. In Ad-
vances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 5648–5656, 2018.

[Toubia et al., 2003] Olivier Toubia, Duncan I Simester,
John R Hauser, and Ely Dahan. Fast polyhedral adaptive
conjoint estimation. Marketing Science, 22(3):273–303,
2003.

[Toubia et al., 2004] Olivier Toubia, John Hauser, and Dun-
can Simester. Polyhedral methods for adaptive choice-
based conjoint analysis. Journal of Marketing Research,
41:116–131, 2004.

[Viappiani and Boutilier, 2010] Paolo Viappiani and Craig
Boutilier. Optimal bayesian recommendation sets and my-
opically optimal choice query sets. In Advances in neural
information processing systems, pages 2352–2360, 2010.

A Appendix
A.1 The KL algorithm and its regret
Recall that in the KL setting, there is only one item, and the
buyer has a fixed unknown value v∗ ∈ [0, 1] for this item.
Within a course of T rounds, the algorithm chooses a price
pt in each round t, and observes whether the offer is ac-
cepted (pt ≤ v) or not (pt > v). The regret is defined as
Regret = Tv −

∑T
t=1 pt · 1[pt ≤ v]. We describe the KL

algorithm for completeness and prove that it obtains a regret
of O(log log T).

Here is how the KL algorithm works: In each round t, the
algorithm keeps a feasible interval It = [at, bt] based on all
the feedback it has received so far. One strategy, inspired by
classic binary search, is to offer the item in round t at price
(at + bt)/2. Even though binary search can (approximately)
find v∗ as quickly as possible, it does not guarantee optimal
regret throughout the T rounds. Notice that when the item
is overpriced (pt > v∗), the offer is declined and the algo-
rithm makes no revenue in round t; if the item is underpriced
(pt < v∗), on the other hand, the offer is accepted and the rev-
enue is pt. This observation, also pointed out by [Kleinberg
and Leighton, 2003], explains the intuition behind the KL Al-
gorithm: even though binary search extracts “most amount of
information” in every round, in order to optimize the regret,
the algorithm has to tend to underprice.

In addition to the feasible interval [at, bt], the KL algorithm
keeps a step size ∆t in each round t. The algorithm then
offers the item at price pt = at + ∆t. There are two possible
outcomes:
(a) If the offer is accepted, then the feasible interval is up-

dated to [at+∆t, bt], i.e., at+1 = at+∆t and bt+1 = bt.
In this case, the algorithm uses the same step size for the
next round (∆t+1 = ∆t); hence, the next offer will be at
price pt+1 = at+1 + ∆t+1 = pt + ∆t.

(b) If the offer is declined, then the feasible interval is up-
dated to [at, at + ∆t], i.e., at+1 = at, bt+1 = pt, and
the step size shrinks to ∆t+1 = ∆2

t .
Initially, a1 = 0, b1 = 1,∆1 = 1/2. The algorithm con-

tinues as long as bt − at > 1/T . Once bt − at ≤ 1/T , at is
a good enough approximation of v∗. At this point, the algo-
rithm keeps offering the item at the same price at for the rest
of the rounds.
Lemma 12 ([Kleinberg and Leighton, 2003], restated). The
KL algorithm has a regret O(log log T).

Proof of Lemma 12. The total regret from steps in which bt−
at ≤ 1/T is at most T · 1/T = 1. For the remaining phases
we note that ∆t has the form 2−2

j

and that ∆t ≤ bt−at, so it
can assume onlyO(log log T) distinct values before bt−at ≤
1/T . Now we bound the total regret incurred for each given
value of the step size ∆t.

For each given value there is at most one no-sale which in-
curs in regret at most 1. To bound the regret on sale events,
note that when ∆t becomes 2−2

j

the value of bt − at is
2−2

j−1

=
√

∆t and therefore there will be at most
√

∆t/∆t

sales for that step size. Each of the sales incur regret at most

the original value of bt − at which is
√

∆t. The total re-
gret incurred on sales for that step size is therefore at most√

∆t ·
√

∆t/∆t = 1.

We now prove that the parallelized KL algorithm we de-
signed in Section 3.1 obtains a regret of O(d log log T).
Restatement of Theorem 2. The parallelized KL algorithm
achieves O(d log log T) total regret on the Product Design
problem with independent items.

Proof of Theorem 2. The optimal item i∗ is never eliminated
from S since it cannot be the case that the same price is re-
jected for i∗ but accepted for some other item. If we restrict
our attention to offers to i∗, this corresponds to an execu-
tion of the single item KL algorithm for i∗ which has regret
O(log log T).

For any other item i 6= i∗, the regret incurred in each round,
as long as item i is still alive, is the exact same regret incurred
when we offered the same price to i∗, hence the total regret is
at most O(d log log T).

A.2 The Kirkpatrick and Gao algorithm, and
their mistake bound

The idea of the algorithm of Kirkpatrick and Gao is to keep a
tuple (a, b1, . . . , bn) where a is the maximum price that led to
an accepted across all items and bi is an upper bound on the
minimum price which led to a rejected offer for item i. The
items that are alive (i.e. can potentially be the optimal item)
are given by S = {i; bi ≥ a+ ε}. The algorithm offers price
p = 1

2 (a+ mini∈S bi) for the item with largest bi.

• If the offer is rejected, we simply update bi = p for that
item.
• If the offer is accepted, then keep offering price pt =

mini∈S bi and updating a and S while the offers are ac-
cepted. Stop when there is a rejection. At that point, just
set pt = mini∈S bi.

At some point, all items will be rejected. At that point return
the item with the best accepted price as the best item. Since
an item is only elminated from S when we can show that its
value is at most the best accepted offer plus ε we are guaran-
tees that once all items are eliminated, the best accepted offer
is ε-optimal.

For completeness, we provide a rough proof sketch of why
the Kirkpatrick-Gao procedure terminates inO(d+log(1/ε))
iterations (for details, we recommend the reader consult the
proof of Theorem 3.2 in [Kirkpatrick and Gao, 1990]).

Our goal will be to examine the potential function φ :=
mini∈S bi−a equal to the gap between the largest YES query
and the smallest NO query. Note that this gap starts equal to
1, and is always at least ε (by the definition of S).

Now, if a price offer is rejected, then the gap is halved.
If the offer is accepted and then immediately rejected, then
the gap is again halved. If the offer is accepted more than
once before the first rejection, then some items are removed
from S, but the gap φ can increase since mini∈S bi increases.
The clever trick is that the bi are chose in such a way that
for each item that is removed from S, the gap φ can at most
double. Therefore, over time, the gap will increase at most d
times and by at most a 2d factor overall. Hence, the number

of gap decreases until no item is left is at most log(2d/ε) =
d+ log(1/ε).

Since the gap must either increase or decrease every two

queries, this means that the total number of queries is at most
2(d+ (d+ log(1/ε)) = O(d+ log(1/ε)), as desired.

	Introduction
	Related Work

	Problem Definition
	Independent Products
	Upper Bounds
	Kleinberg-Leighton (KL) Algorithm for One Item
	First Algorithm: Parallelization of the Kleinberg-Leighton Algorithm
	Second Algorithm: Binary Search Based Algorithm

	Lower Bound

	General Products
	Appendix
	The KL algorithm and its regret
	The Kirkpatrick and Gao algorithm, and their mistake bound

