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ABSTRACT
The Generalized Second Price (GSP) auction is the primary
auction used for selling sponsored search advertisements. In
this paper we consider the revenue of this auction at equilib-
rium. We prove that if agent values are drawn from identi-
cal regular distributions, then the GSP auction paired with
an appropriate reserve price generates a constant fraction
(1/6th) of the optimal revenue.

In the full-information game, we show that at any Nash
equilibrium of the GSP auction obtains at least half of the
revenue of the VCG mechanism excluding the payment of a
single participant. This bound holds also with any reserve
price, and is tight.

Finally, we consider the tradeoff between maximizing rev-
enue and social welfare. We introduce a natural convexity
assumption on the click-through rates and show that it im-
plies that the revenue-maximizing equilibrium of GSP in the
full information model will necessarily be envy-free. In par-
ticular, it is always possible to maximize revenue and social
welfare simultaneously when click-through rates are convex.
Without this convexity assumption, however, we demon-
strate that revenue may be maximized at a non-envy-free
equilibrium that generates a socially inefficient allocation.
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1. INTRODUCTION
The sale of sponsored search advertising space is a pri-

mary source of income for Internet companies, and respon-
sible for billions of dollars in annual advertising revenue [7].
The Generalized Second Price (GSP) auction is the premier
method by which sponsored search advertising space is sold;
it is currently employed by Google, Bing, and Yahoo. How-
ever, use of the GSP auction is not universal: the classical
VCG mechanism was adopted by Facebook for its AdAuc-
tion system [12]. In fact, Google also considered switching
its advertising platform to a VCG auction some years ago,
but eventually decided against it [23]. This apparent ten-
sion underlines the importance of understanding how these
mechanisms compare. There are many factors in compar-
ing possible mechanisms: The welfare of three distinct user
groups (the experience of the searchers, the welfare of ad-
vertisers, and the revenue of the auction) are all important
considerations, as well as the simplicity of the auction de-
sign. In this paper, we take the point of view of the seller
and compare the revenue properties of the GSP and VCG
auctions.

Previous studies of the revenue of GSP have largely fo-
cused on outcomes of the full information game, restricted
to the subclass of envy-free equilibria [7, 25, 9]. Here we
consider revenue in equilibria of the Bayesian partial infor-
mation version of the game, as well as equilibria of the full
information game that are not envy-free, and are interested
to show that GSP generates close to as much revenue as the
classical optimal VCG auction. This comparison is natu-
ral, as in the Bayesian model the VCG auction is revenue
optimal with the appropriate reserve price [20].

Let us first briefly describe the model introduced by Edel-
man et al [7] and Varian [24]. In sponsored search, a user
makes a query for certain keywords in a search engine and is
presented with a list of relevant advertisements in addition
to organic search results. We assume a “pay-per-click” pric-
ing model, in which the advertiser pays a fee to the search
provider whenever a user clicks on an advertisement. There
are multiple positions (or “slots”) in which an ad may ap-
pear, and the probability that a user clicks an ad depends
on its slot. This is modeled as a click-through rate (CTR),
a probability α associated with each slot, the probability of
getting a click for an advertisement in that position. The
search engine must therefore determine which ads to place
where, and determine a price per click for each slot. This is
done via an auction in which advertisers make bids, which
are viewed as the advertiser’s maximum willingness to pay
per click. We note that this simplified model as a one-shot



game does not account for advertiser budgets, so models the
case when budgets are large. Also, for simplicity of presen-
tation, we will assume that all ads have the same quality
(i.e. click-through rate does not depend on the advertiser
selected for a slot), though our results for the full informa-
tion game extend to the version of the model with separable
click-though rates.

The VCG and GSP mechanisms differ in the way in which
the aforementioned auction is resolved. In both auctions,
advertisers are assigned slots in order of their bids, with
higher bidders receiving slots with higher click probabili-
ties. The two auctions differ in their payment schemes. In
VCG, each agent pays an amount equal to his externality
on the other agents: the decrease in the total welfare of all
other agents caused by the presence of this advertiser. By
contrast, in GSP each advertiser simply pays a price per
click equal to the next highest bid. The VCG auction has
the strong property of being truthful in dominant strategies.
The GSP auction is not truthful, and is therefore prone to
strategic bidding behavior. Indeed, strategic manipulation
of bids is well-documented in historical GSP bidding data
[6].

Since the VCG mechanism is truthful, the revenue of VCG
is simply the revenue generated when all bidders declare
their values truthfully. If bidders declare their values truth-
fully in a GSP auction, GSP generates strictly more rev-
enue than VCG. However, rational agents may not declare
their values truthfully when participating in a GSP auction.
Thus, when studying the revenue of GSP, we consider the
revenue generated at a Nash equilibrium; that is, a profile
of bidding strategies such that no advertiser can improve his
utility (or expected utility in the Bayesian case) by unilat-
erally deviating. Our goal, then, is a comparison between
the revenue of the VCG auction and the revenue of GSP at
equilibrium.

Results.
In Section 3 we consider the Bayesian version of this game

when valuations are drawn from identical and independent
distributions that satisfy the regularity condition. We show
that if we allow the auctioneer to include reserve prices the
GSP auction always obtains a constant fraction (1/6th) of
the optimal VCG revenue, in expectation. The Bayesian set-
ting is motivated by player uncertainty: for many keywords,
the ability of a player to exactly predict his opponents types
is impaired. Due to complicating factors such as the bud-
gets, quality scores (which depend on many characteristics
of each query, such as origin, time, and search history of
the user), and the underlying ad allocation algorithm, each
auction is different (even those triggered by the same search
term) [22]. The resulting uncertainty is captured by equilib-
ria in a Bayesian partial information model, where bidders
can only evaluate the expected welfare of the equilibrium,
with expectation taken over the valuations of other bidders.
It is well-known that, in this setting the revenue-optimal
truthful mechanism is the VCG auction with Myerson’s re-
serve price [20].

One might also wish to bound the revenue of GSP with
respect to the revenue of VCG without reserve prices, but
we show that this is not possible: there are cases in which
the VCG revenue is unboundedly greater than the GSP
revenue. However, if the slot CTRs satisfy a certain well-
separatedness condition - namely that the click through rates

of adjacent slots differ by at least a certain constant factor -
then we prove that GSP always obtains a constant fraction
of the VCG revenue even in settings of partial information,
extending a result of Lahaie [15] who considered welfare un-
der this assumption on the CTRs. Our result holds even if
we do not assume that agents avoid dominated strategies, as
long as there are at least three participants in the auction.

In Sections 4 and 5 we consider the full information game.
When auctions with the same participants, valuations, and
quality scores are repeated many times each day, a stable
outcome can be modeled by a full-information Nash equi-
librium of the one-shot game. We prove that at any Nash
equilibrium, the revenue generated by GSP is at least half
of the VCG revenue, excluding the single largest payment of
a bidder. Thus, as long as the VCG revenue is not concen-
trated on the payment of a single participant, the worst-case
GSP revenue approximates the VCG revenue to within a
constant factor. This result also holds with an arbitrary re-
serve price. We also provide an example illustrating that the
factor of 2 in our analysis is tight, and the revenue of GSP
at equilibrium may be arbitrarily less than the full revenue
of VCG (without excluding a bidder).

In Section 5 we analyze the tradeoffs of the maximum
revenue attainable by the full information GSP mechanism
under different equilibrium notions. We demonstrate that
there can exist inefficient, non-envy-free equilibria that ob-
tain greater revenue than any envy-free equilibrium. How-
ever, we prove that if CTRs are convex, meaning that the
marginal increase in CTR is monotone in slot position, then
the optimal revenue always occurs at an envy-free equilib-
rium. This implies that when click-through rates are convex,
the GSP auction optimizes revenue at an equilibrium that
simultaneously maximizes the social welfare. The convexity
assumption we introduce is quite natural and may be of in-
dependent interest. Note that this assumption is satisfied in
the case when CTRs degrade by a constant factor from one
slot to the next.

Related Work.
There has been considerable amount of work on the eco-

nomic and algorithmic issues behind sponsored search auc-
tions – see the survey of Lahaie et al [16] for an overview
of the early work and the survey of Maille et al [18] for
recent developments. The GSP model we adopt is due to
Edelman et al [7], Varian [24] and Aggarwal et al [2]. Much
of the previous work on the GSP auction considered social
welfare properties of equilibria. Edelman et al [7] and Var-
ian [24] define a subclass of Nash equilibria called envy-free
equilibria and show that such equilibria always exist and
are socially optimal, therefore showing that the price of sta-
bility is 1 for the full information game. Paes Leme and
Tardos [21] showed a bound of 1.618 on the price of anar-
chy, which was recently improved to 1.282 by Caragiannis at
al [4]. The Bayesian version of this game, when valuations
are random and only the distribution is public knowledge,
was first studied by Gomes and Sweeney [10] who showed
that efficient equilibria may not exist in this setting. Paes
Leme and Tardos [21] prove a price of anarchy of 8, which
was recently improved by Lucier and Paes Leme [17] and
Caragiannis at al [4] to 3.03.

Considering revenue properties of GSP, Edelman et al [7],
and Varian [24] show that envy free equilibria have revenue
at least as good as the revenue of VCG. Both [7] and [24]



present informal arguments to support the equilibrium selec-
tion for this class of equilibria, but there is no strong theo-
retical model that explains this selection [3, 9]. Further, the
notion of envy-free equilibria applies only in the full informa-
tion game. Varian [25] shows how to compute the revenue
optimal envy-free Nash equilibrium, although his model al-
lows agents to overbid (which is dominated strategy, and we
consider it unnatural). We consider the question of maxi-
mum revenue equilibria without the assumption of envy-free
outcomes, and show that in general inefficient equilibria can
generate more revenue than efficient ones, but this is no
longer the case under a natural convexity assumption.

Gomes and Sweeney [10] study GSP as a Bayesian game,
and show that symmetric efficient equilibria may not exist
in the Bayesian setting. They analyze the influence of click-
through-rates on the revenue in equilibrium and observe the
counter-intuitive phenomenon by which revenue decreases
when click-through-rates increase.

A common tool for increasing revenue in settings of par-
tial information is to apply reserve prices, where bids are
rejected unless they meet some minimum bid r. When bid-
ders’ values are drawn from identically distributed satisfy-
ing the regularity condition1, the revenue-optimal truthful
auction for sponsored search is the VCG auction with an ap-
propriate reserve price [20]. Edelman and Schwarz [8] show
that in GSP auctions reserve prices have a surprisingly large
effect on revenue.

Edelman and Schwarz [9] model the repeated auctions for
a keyword as a repeated game, and show, using Myerson’s
optimal auction [20], that if valuations are drawn from an
iid distribution then the Nash equilibria that arise as a sta-
ble limit of rational play in this repeated game cannot have
revenue more than the optimal auction: VCG with an ap-
propriately chosen reserve price. However, they don’t con-
sider whether GSP may generate revenue much less than the
VCG auction, which is the main question we consider. Also,
unlike Edelman and Schwarz [9], we do not use the repeated
nature of this game for arguing for certain equilibrium selec-
tion: rather, we consider all stable outcomes of the auction,
not only those that arise as limits of rational repeated play.

Finally, we mention that the well-known revenue equiv-
alence theorem, which provides conditions under which al-
ternative mechanisms generate the same revenue at equilib-
rium, does not apply in our settings. Revenue equivalence
requires that agents have values drawn from identical dis-
tributions and that the mechanisms generate the same out-
come. As a result, this equivalence does not apply in the
full information setting, and cannot be used to compare in-
efficient equilibria of GSP to the VCG revenue.

2. PRELIMINARIES
An AdAuctions instance is composed of n players and

n slots. In the full information model, each player has a
value vi for each click he gets, and each slot j has click-
through-rate αj . That means that if player i is allocated in
slot j, he gets αj clicks in expectation, where α1 ≥ . . . ≥
αn. In the full information setting, we will assume players
are numbered such that v1 ≥ v2 ≥ . . . ≥ vn. Let α =
(α1, . . . , αn) be the CTR vector and v = (v1, . . . , vn) be the
type vector.

1Many common distributions are regular, including all uni-
form, normal, and exponential distributions.

A mechanism for the AdAuctions problem is as follows:
it begins by eliciting bids bi from the players, which can be
thought of as declared valuations. We write b = (b1, . . . , bn)
for the bid vector. Using the b and α, the mechanism
chooses an allocation π : [n] → [n] which means that player
π(j) is allocated to slot j, and a price vector p = (p1, . . . , pn),
where pi is the price that player i pays per click. Player i
then experiences utility ui(b) = ασ(i)(vi −pi), where σ(i) =

π−1(i).
The social welfare generated by the mechanism is given by

SW (v, π) =
∑

i
αivπ(i) and the revenue is given by R(b) =

∑

i
ασ(i)pi. We focus on two mechanisms: GSP and VCG.

In both mechanisms, the players are ordered by their bids,
i.e, π(j) is the player with the jth largest bid, but they
differ in the payments charged. GSP mimics the single-
item second price auction by charging each player the bid
of the next highest bidder, i.e. pi = bπ(σ(i)+1) if σ(i) < n
and zero otherwise. VCG charges each player the exter-
nality it imposes on the other players, which is pV CG

i =
1

ασ(i)

∑n

j=σ(i)+1(αj−1 − αj)bπ(j).

VCG is a truthful mechanism: regardless of what the
other players are doing, it is a weakly dominant strategy for
player i to report his true valuation. The resulting outcome
of VCG is therefore social-welfare optimal and the revenue
is

RV CG(v) =
∑

i

∑

j>i

(αj−1 −αj)vj =
n
∑

i=2

(i− 1)(αi−1 −αi)vi.

The GSP auction, however, is not truthful. Thus, for GSP,
we are interested in the set of bid profiles that constitute a
Nash equilibrium, i.e. such that

ui(bi,b−i) ≥ ui(b
′
i,b−i),∀b

′
i ∈ [0, vi].

We will assume that players do not overbid (i.e. that bi ≤
vi) since bidding more than one’s true value is a weakly
dominated strategy [21].

We say that an equilibrium is efficient if it maximizes
social welfare, i.e. π(i) = i, ∀i in the full information version.

We will also consider the comparison between VCG and
GSP in the presence of a reserve price. Let VCGr be the
VCG mechanism with reserve price r, where we discard all
players with bids smaller then r and run the VCG mecha-
nism on the remaining players, who then pay price per click
max{pi, r}. In the analogous variant of the GSP mecha-
nism, which we call GSP with reserve price r (GSPr), we
also discard all players with bids smaller then r, the remain-
ing players are allocated using GSP, and the last player to
be allocated pays price r per click.

Below, we represent the special classes of equilibria that
have been studied in the literature, which we call equilib-
rium hierarchy for GSP. We define and discuss them in
Section 5 :
{

VCG
outcome

}

⊆

{

envy-free
equilibria

}

⊆

{

efficient
Nash eq

}

⊆

{

all
Nash

}

2.1 Bayesian setting
In a Bayesian setting, each player knows her own valuation

but only knows a distribution on the other players’ valua-
tions. In this model the values of the players are random
variables, with type vector v drawn from a known distribu-
tion F . After learning his own value vi, a player chooses a
bid bi(vi) to play in the AdAuctions game. The strategies



are therefore bidding functions bi : R+ → R+, and we will
continue to assume that players do not overbid, i.e. bi(v) ≤ v
(again, since overbidding is weakly dominated). A set of bid-
ding functions is a Bayes-Nash equilibrium if, for all i,
vi, and b′i,

E[ui(bi(vi),b−i(v−i))|vi] ≥ E[ui(b
′
i(vi),b−i(v−i))|vi].

A useful tool for studying revenue in the Bayesian set-
ting is Myerson’s Lemma, which can be rephrased in the
AdAuctions setting as follows. Given a distribution F over
agent values, the virtual valuation function is defined by

φ(x) = x− 1−F (x)
f(x)

.

Lemma 1 (Myerson [20]) At any Bayes-Nash equilibrium
of an AdAuction mechanism, we have that, for all i, E[ασ(i)pi] =
E[ασ(i)φ(vi)] where pi is the payment per click of player i
and ασ(i) is the number of clicks received by agent i, and
expectation is with respect to v ∼ F.

We say that a distribution is regular if φ(x) is a mono-
tone non-decreasing function. For regular distributions, the
revenue-optimal mechanism for AdAuctions corresponds to
running VCG with Myerson’s reserve price r, which is the
largest value such that φ(r) = 0. We will refer to this as
Myerson’s mechanism, V CGr.

Running GSP (or VCG) with reserve price r means not
allocating any user with value vi < r and running GSP (or
VCG) with the remaining agents. For the allocated agents,
the mechanism charges per click the maximum between the
GSP (VCG) price and r.

A special class of regular distributions is the monotone
hazard rate distributions (MHR), which are the distribu-
tions for which f(x)/(1− F (x)) is non-decreasing.

3. REVENUE IN THE BAYESIAN SETTING
In this section we consider the revenue properties of GSP

at Bayes-Nash equilibrium. We prove that if agent values
are drawn iid from a regular distribution and GSP is paired
with an appropriate reserve price, the revenue generated at
equilibrium will be within a constant factor of the VCG rev-
enue with optimal reserve, the revenue-optimal mechanism
over all Bayes-Nash implementations. So our result implies
that GSP revenue is within a constant factor of the optimal.
We will first consider the special case of MHR distributions,
then prove our result in the more general setting where val-
ues are drawn from regular distributions.

We start by showing that the use of reserve prices is cru-
cial: there are instances in which the GSP auction without
reserve generates no revenue, whereas the VCG auction gen-
erates positive revenue. We do note, however, that one can
bound the revenue of GSP without reserve prices when click-
through rates are well-separated, meaning that there exists
a δ such that αi+1 ≤ δαi for all i. We present these bounds
in the Appendix A..

3.1 Revenue without Reserves: Bad Examples
We start by providing an example in the Bayesian set-

ting where VCG generates positive revenue and GSP has a
Bayes-Nash equilibrium that generates zero revenue. Con-
sider three players with iid valuations drawn uniformly from
[1, 2] and three slots with α = [1, 0.5, 0.5]. Let v(i) be the
ith largest valuation (which is naturally a random variable

defined by v). We have

E[RV CG(v)] = E[0.5v(2)] =
3

4
.

Now, consider the following equilibrium of GSP: bi(vi) = 0
for i = 2, 3 and b1(v1) = v1. Clearly player 1 is in equi-
librium. To see that players i = 2, 3 are in equilibrium,
suppose player i has valuation vi > 0. Then his expected
utility when bidding any value in [0, 1] is 0.5vi, whereas if
he changed his bid to some b > 1 his utility would be

E[ui(b
′, b−i)|vi] = 0.5vi + 0.5viP(v1 ≤ b′)−

∫ b′

0

v1dP(v1) =

= 0.5vi + 0.5vi(b
′ − 1)−

(b′)2 − 1

2
≤

≤ 0.5vi.

Thus agent i cannot increase his expected utility by placing
a non-zero bid.

3.2 Warmup: MHR Valuations
We now show that if valuations are drawn from a MHR

distribution and GSP is paired with the Myerson reserve
price, the resulting mechanism extracts a constant fraction
of the optimal revenue.

In what follows we will write x+ to denote max{x, 0}.

Theorem 2 If valuations are drawn iid from a MHR distri-
bution F and r is the Myerson reserve price for F , then the
expected revenue of GSPr at any Bayes-Nash equilibrium is
at least 1

6
of the optimal revenue.

Our proof will make use of the fact that, for MHR distri-
butions, φ(x) ≥ x − r for any x ≥ r. To see this, note that

x − φ(x) = 1−F (x)
f(x)

≤ 1−F (r)
f(r)

= r by monotonicity and the

definition of Myerson’s reserve price.

Proof. Let b be a Bayes-Nash equilibrium of GSPr, and
let Rr(v) be the expected revenue of GSPr at this equi-
librium. Let RV CG

r (v) be the VCGr revenue. Let ran-
dom variable µ(i) denote the slot occupied by player i in
the optimal (i.e. efficient) allocation. By Myerson’s Lemma,
E[RV CG

r (v)] = E[
∑

i
αµ(i)φ(vi)

+]. For each player i, let Ei
1

denote the event that bπ(µ(i)) < vi/2, and let Ei
2 denote the

event that bπ(µ(i)) ≥ vi/2. We will consider each of these
events in turn. For the first event, we’ll show that player i
contributes to the revenue at least 1/2 his contribution in
the optimum. Consider a player i with value vi. We have

Ev−i

[

αµ(i)
vi
2
1{Ei

1}
]

≤ Ev−i

[

ui

(vi
2
,b−i

)]

≤ Ev−i
[ui(b)] ≤ Ev−i

[ασ(i)vi]

where the first inequality is due to the definition of Ei
1 im-

plying that a bid of vi/2 would win slot µ(i) (or better)
at price no more than vi/2; the second follows since b is a
Bayes-Nash equilibrium, and the third comes from the def-
inition of utility. Notice that all the expectations are taken
over v−i and vi is a constant, so we can divide by vi, mul-
tiply by φ(vi)

+, take expectations over vi and sum over all
players i to obtain

∑

i

Ev[αµ(i)φ(vi)
+1{Ei

1}] ≤ 2
∑

i

Ev[ασ(i)φ(vi)
+]

= 2Ev[Rr(v)].



For the second event, consider again a player i with value vi.
We will show that the player who gets slot µ(i) contributes
to the revenue. We have

Ev−i

[

αµ(i)
φ(vi)

+

2
1{Ei

2}

]

≤ Ev−i

[

αµ(i)
vi
2
1{Ei

2}
]

≤ Ev−i
[αµ(i)vπ(µ(i))]

≤ Ev−i
[αµ(i)(r + φ(vπ(µ(i)))

+)]

where we used the fact that x ≥ φ(x)+ ≥ x − r for all x.
Taking expectations over vi, summing over all players, and
noting that event Ei

2 implies that vπ(µ(i)) ≥ r, we obtain
∑

i

Ev[αµ(i)φ(vi)
+1{Ei

2}] ≤

≤ 2
∑

i

Ev[ασ(i)φ(vi)
+] + 2

∑

i

ασ(i)r1{vi ≥ r}.

Since GSPr extracts a revenue of at least r per click from ev-
ery bidder with vi > r, we have Ev[Rr] ≥ Ev[

∑

i
ασ(i)r1{vi ≥

r}]. We conclude that
∑

i
Ev−i

[αµ(i)φ(vi)
+1{Ei

2}] ≤ 4E[Rr].
Combining our analysis for the two events, we have

E[RV CG
r (v)] = E

[

∑

i

αµ(i)φ(vi)
+(1{Ei

1}+ 1{Ei
2})

]

≤ 2E[Rr(v)] + 4E[Rr(v)] = 6E[Rr(v)].

3.3 Regular valuations
We now show that if player valuations are drawn from a

regular distribution, then there exists an r′ such that run-
ning GSP with reserve r′ extracts a constant fraction of the
optimal revenue. The bound for the MHR bounding the
contribution of the player at slot µ(i) took advantage of the
fact that in a MHR distribution φ(x) ≥ x − r, which may
not be true in a regular distribution. Instead, we will use
that the player in slot µ(i) − 1 pays at least the bid in slot
µ(i). This leaves us with the added difficulty in bounding
the revenue generated by the first slot. To address this issue,
we make use of the well-studied Prophet Inequalities [13, 14,
11].

A simplified version of the Prophet Inequality is as follows.
Suppose zi are independent non-negative random variables.
Given any t ≥ 0, write yt for the value of the first zi (by
index) satisfying zi > t (or 0 if there is no such zi). Then
the Prophet Inequality states that there exists some t ≥ 0
such that E[yt] ≥

1
2
E[maxi zi]. Since the proof is of this fact

is very short, we include it for completness in Appendix B.
As has been noted elsewhere [5], the Prophet Inequality

has immediate consequences for the revenue of auctions with
anonymous reserve prices. The following lemma encapsu-
lates the observation we require.

Lemma 3 If vi are drawn iid from a regular distribution
then there exists r2 ≥ 0 such that, writing Z for the event
that maxi vi ≥ r2, E[maxi φ(vi)

+|Z]P(Z) ≥ 1
2
E[maxi φ(vi)

+].

Proof. (sketch) This follows by applying the Prophet
Inequality to virtual values zi = φ(vi) and noting that reg-
ularity implies that vi ≥ r2 iff φ(vi) ≥ φ(r2).

It is important to remark that the proof of the Prophet
Inequality is constructive. If one is able to efficiently com-
pute E[(vi−t)+] for every t, then we can compute r2 exactly
using binary search. We refer to Appendix B for details.

Our approach will now be to analyze the revenue of GSP
under two different reserve prices. An argument similar to
Theorem 2 shows that GSP with Myerson reserve obtains a
constant fraction of the optimal revenue for all slots other
than the first slot. On the other hand, GSP with reserve r2
from Lemma 3 will obtain at least half of the optimal revenue
generated by the first slot. One of these two reserve prices
must therefore generate a constant fraction of the optimal
revenue.

Theorem 4 If valuations vi are drawn iid from a regular
distribution F , then there is a reserve price r such that the
expected revenue of GSPr at any Bayes-Nash equilibrium is
at least 1

6
of the optimal revenue.

Proof. Define RV CG
r (v), Rr(v), and µ(i) as in Theorem

2. Let r1 denote the Myerson reserve price for F . By My-
erson’s Lemma, E[RV CG

r (v)] = E[
∑

i αµ(i)φ(vi)
+]. For each

player i, we define the following three events:

• Ei
1 = { bπ(µ(i)) < vi/2 and µ(i) 6= 1 }

• Ei
2 = { bπ(µ(i)) ≥ vi/2 and µ(i) 6= 1 }

• Ei
3 = { µ(i) = 1 }

We wish to bound the virtual value of the optimal allocation,
conditioning on each of these events in turn. For the first
event, we proceed precisely as in Theorem 2 to obtain

∑

i

Ev−i
[αµ(i)φ(vi)

+1{Ei
1}] ≤ 2E[Rr1 ].

For the second event, we use the revenue from slot µ(1)− 1.
Let random variable pi denote the payment per click of the
player in slot i. Then for all v,

αµ(i)φ(vi)
+1{Ei

2} ≤ αµ(i)vi1{Ei
2} ≤ 2αµ(i)−1pµ(i)−11{Ei

2}

where the second inequality follows sinceEi
2 implies pµ(i)−1 =

bµ(i) ≥ vi/2. Therefore, summing over all agents i and tak-
ing expectations, we get

Ev

[

∑

i

αµ(i)φ(vi)
+1{Ei

2}

]

≤ 2Ev

[

∑

i

αipi

]

= 2E[Rr1 ].

Finally, for event Ei
3, consider setting the reserve price to

be r2 from the statement of Lemma 3 (with distribution F ).
Note that

E

[

∑

i

αµ(i)φ(vi)
+1{Ei

3}

]

= α1E[max
i

φ(vi)
+].

On the other hand, setting reserve price r2 for GSP we get

E[Rr2 ] ≥ α1E[max
i

φ(vi)
+ | max

i
vi ≥ r2]P(max

i
vi ≥ r2)

≥
1

2
α1E[max

i
φ(vi)

+]

where the first inequality follows by considering only the
expected virtual value due to the first slot and the last in-
equality follows from Lemma 3. Combining our analysis for
each of the three cases, we have

E[RV CG
r ] = E

[

∑

i

αµ(i)φ(vi)
+(1{Ei

1}+ 1{Ei
2}+ 1{Ei

3})

]

≤ 4E[Rr1 ] + 2E[Rr2 ]

and hence max{E[Rr1 ],E[Rr2 ]} ≥ 1
6
E[RV CG

r ].



4. REVENUE IN FULL INFORMATION GSP
We now wish to compare the revenue properties of GSP

and VCG in the full information setting. We start by giv-
ing examples showing that there are no universal constants
that bound these two quantities. Then we introduce a new
benchmark related to VCG, and show that the GSP revenue
is not too low relative to this benchmark.

4.1 Full Information Revenue: Examples
Unfortunately, there are no universal constants c1, c2 > 0

such that for every full information AdAuctions instance
α,v and for all equilibria b of GSP it holds that

c1 · R
V CG(v) ≤ R(b) ≤ c2 · R

V CG(v).

In fact, GSP can generate arbitrarily more revenue than
VCG and vice-versa. For example, consider two players with
α = {1, 0}, v = {2, 1}. Then VCG generates revenue 1, but
GSP has the Nash equilibrium b = [2, 0] that generates no
revenue.

As a counter-example for the second inequality, consider
the following instance: α = {1, 1− ǫ}, v = {ǫ−1, 1}. Notice
that the revenue produced by VCG is ǫ, while GSP has the
equilibrium b = [1, 1] generating revenue 1.

4.2 Revenue Bound in Full Information
Next, we will prove that the GSP revenue cannot be

much less than a revenue benchmark based on the VCG
auction. Intuitively, the difficulty behind our bad examples
is in extracting revenue from the player with the largest
private value. Motivated by this, we consider the following
benchmark:

B(v) =

n
∑

i=2

pVCG
i ασ(i) =

n
∑

i=2

∑

j>i

(αj−1 − αj)vj

=

n
∑

i=2

(i− 2)(αi−1 − αi)vi

which is the VCG revenue from players 2, 3, . . . , n. Recall
that in the full information setting we assumed that players
are numbered such that v1 ≥ v2 ≥ . . .. We show that the
GSP revenue is always at least half of this benchmark at
any equilibrium. Thus, unless VCG gets most of its revenue
from a single player, GSP revenue will be within a constant
factor of the VCG revenue.

Theorem 5 Given an AdAuctions instance α,v, and a Nash
equilibrium b of GSP, we have R(b) ≥ 1

2
B(v), and this

bound is tight.

We prove Theorem 5 in two steps. First we define the con-
cept of up-Nash2 equilibrium for GSP, then we show that any
inefficient Nash equilibria can be written as an efficient up-
Nash equilibrium. In the second step, we prove the desired
revenue bound for all efficient up-Nash equilibria.

Definition 6 Given a bid profile b, we say it is up-Nash

for player i if he can’t increase his utility by taking some slot
above, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j)),∀j < σ(i).

2Our concepts of up-Nash and down-Nash equilibria are very
similar to the concepts of upwards stable and downwards
stable equilibria in Markakis and Telelis [19]

Analogously, we say that b is down-Nash for player i if he
can’t increase his utility by taking some slot below, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j+1)),∀j > σ(i).

A bid profile is up-Nash (down-Nash) if it is up-Nash (down-
Nash) for all players i. Clearly a bid profile b is a Nash
equilibrium iff it is both up-Nash and down-Nash.

Lemma 7 If a bid profile b is a Nash equilibrium, then the
bid profile b′ where b′i = bπ(i) is up-Nash.

Proof. We will prove the lemma by modifying bid profile
b in a sequence of steps. Fix some k ≤ n, and suppose that
b is a bid profile (with corresponding allocation π) such that

• players j = 1, . . . , k satisfy the Nash conditions (i.e.
both up-Nash and down-Nash) in b,

• players j = k + 1, . . . , n are such that σ(j) = j and
they satisfy the up-Nash conditions in b,

• σ(k) < k.

We then define b′ by swapping the bids of players k and
π(k), that is setting b′i = bi for i 6= k, π(k), b′k = bπ(k), and
b′π(k) = bk. We claim that b′ is up-Nash for players k, . . . , n
and Nash for the remaining players. This then implies the
desired result, since we can apply this operation for k = n,
followed by k = n − 1, . . . , 2, resulting in the required bid
profile.

Since our transformation does not alter the bids associated
with given slots, we just need to check three things: the up
and down-Nash inequalities for player π(k), and the up-Nash
inequality for player k.

Under bid profile b′, player π(k) gets slot σ(k). This
player doesn’t want to change his bid to win any slot j >
σ(k) since in the bid profile b player k with lower value
didn’t want to get these slots. We therefore have ασ(k)(vk −
bπ(σ(k)+1)) ≥ αj(vk − bπ(j+1)) and since vπ(k) ≥ vk, we con-
clude

ασ(k)(vπ(k) − bπ(σ(k)+1)) ≥ αj(vπ(k) − bπ(j+1)). (1)

To see that player π(k) would not prefer to take any slot
j < σ(k), notice that π(k) didn’t want to move to a higher
slot in b, so αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j)). This,
combined with equation (1) for j = k (stating that π(k)
prefers slot σ(k) to k) gives the up-Nash inequality for player
π(k).

Next consider player k in bid profile b′, where we gets slot
k. We wish to prove the up-Nash inequality for k. Notice
that, in b, π(k) had slot k and didn’t want to switch to a
higher slot, so we know αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) −
bπ(j)).

Now, since vπ(k) ≥ vk, we have αk(vk−bπ(k+1)) ≥ αj(vk−
bπ(j)) which is the desired inequality.

Now to prove Theorem 5 we use the up-Nash profile b′.

Proof of Theorem 5 : Given any Nash equilibrium b,
consider the bid profile b′ of Lemma 7, which is an up-Nash
equilibrium in which each player k occupies slot k. By the
up-Nash inequalities, for each k we have

αk(vk − b′k+1) ≥ αk−1(vk − b′k−1).

We can rewrite this as

αk−1b
′
k−1 ≥ (αk−1 − αk)vk + αkb

′
k+1.



Then, since αk ≥ αk+1,

αk−1b
′
k−1 ≥

∑

j∈k+2N

(αj−1 − αj)vj

where k+2N = {k, k+2, k+4, . . .}. Now we can bound the
revenue of b:

R(b) = R(b′) =
∑

k

αkb
′
k+1 ≥

∑

k

αk+1b
′
k+1 ≥

≥
∑

k

∑

j∈k+2+2N

(αj−1 − αj)vj ≥

≥
n
∑

k=2

k − 2

2
(αk−1 − αk)vk =

1

2
B(v).

To show that the bound in Theorem 5 is tight, consider the
following example with n slots and n players, parametrized
by δ > 0:

α = [1, 1, . . . , 1, 1− δ, 0],

v = [1, 1, . . . , 1, 1, δ],

b = [δ, δ, . . . , δ, δ, 0].

In this case R(b) = (n − 2)δ + δ(1 − δ) and RV CG(v) =

(2δ − δ2)(n− 3) + δ(1− δ). Therefore limn→∞
R(b)
B(v)

= 2− δ

and it tends to 2 as δ → 0.
Notice that those bounds also carry for the case where

there is a reserve price r. We compare the revenue Rr(b)
with reserve price r, against a slightly modified benchmark:
Br(v) which is the revenue VCGr extracts from players
2, . . . , n.

Corollary 8 Let b be a Nash equilibrium of the GSPr game,
then Rr(b) ≥

1
2
Br(v).

Proof. We can assume wlog that vi, bi ≥ r (otherwise
those players don’t participate in any of the auctions). We
can define an upper-Nash bid profile b′ as in Lemma 7. Now,
notice that all players in b′ are paying at least r per click.
We can divide the players in two groups: players 1 . . . k are
paying more than r in VCGr and players k + 1 . . . n are
paying exactly r. It is trivial that for the players k + 1 . . . n
we extract at least the same revenue under VCGr then under
GSPr. For the rest of the players we need to do the exact
same analysis as in the proof of Theorem 5.

5. TRADEOFF BETWEEN REVENUE AND
EFFICIENCY

In this section we consider the tradeoff between efficiency
and revenue, and ask if optimal efficiency and optimal rev-
enue can always be achieved in the same equilibrium. We
give a negative answer to this question, showing that for
some AdAuction instances, one can increase revenue by se-
lecting inefficient equilibria. First we recall the equilibrium
hierarchy briefly discussed in the introduction.

Then we characterize the maximum revenue possible for
envy free equilibrium (that is always efficient). Does this
equilibrium class generate more or less revenue than other
classes, such as efficient equilibria or all pure equilibria?
This question of comparing the revenue of VCG and envy-
free equilibria of GSP was addressed by [7], who show that
the revenue in any envy-free equilibrium is at least that of

(1− α)v

(1− α)

v

(1− α)v (1− α) v

b1

b2

Figure 1: Equilibria hierarchy for GSP for α =
[1, 1/2], v = [1, 2/3]: the strong blue dot represents
the VCG outcome, the pattern region the envy-free
equilibria, the blue region all the efficient equilibria
and the red region the inefficient equilibria

the VCG outcome (i.e. the VCG outcome is the envy-free
equilibria generating smallest possible revenue). Moreover,
as we’ve shown, an envy-free equilibrium can generate ar-
bitrarily more revenue than the VCG outcome. Varian [25]
shows how to compute the revenue optimal envy free Nash
equilibrium, if we assume that agents will overbid. Allow-
ing overbidding can result in very high revenue (eg.., the
maximum valuation in a single item auction). Here we de-
termine the maximum revenue that can be obtained if we
do not assume that agents bid at envy-free equilibria, and
without requiring that agents apply the dominated strategy
of overbidding.

Finally, we use this characterization to we give a natural
sufficient condition under which there is a revenue-optimal
equilibrium that is efficient.

5.1 Equilibrium hierarchy for GSP
Edelman, Ostrovsky and Schwarz [7] and Varian [24] showed

that the full information game always has a Pure Nash equi-
librium, and moreover, there is a pure Nash equilibrium
which has same outcome and payments as VCG. At this
equilibrium, players bid

bVi =
1

αi−1

n
∑

j=i

(αj−1 − αj)vj .

The authors also define a class of equilibria called envy-free
or symmetric equilibria. This is the class of bid profiles
b such that

ασ(i)(vi − bσ(i)+1) ≥ αj(vi − bj+1).

It is easy to see that all envy-free equilibria are Nash equi-
libria, though not all Nash equilibria are envy-free. The bid
profiles that are envy-free are always efficient and the rev-
enue of an envy-free equilibrium is always greater than or
equal to the VCG revenue. That is, if b is an envy-free
equilibrium, R(b) ≥ RV CG(v).

Although all envy-free equilibria are efficient, there are
efficient equilibria that are not envy-free, as one can see for
example in Figure 1, as well as inefficient equilibria. We



therefore have the following hierarchy:
{

VCG
outcome

}

⊆

{

envy-free
equilibria

}

⊆

{

efficient
Nash eq

}

⊆

{

all
Nash

}

5.2 Envy-free and efficient equilibrium
As shown in the example of Figure 1, there are efficient

equilibria that generate arbitrarily less revenue then any
envy-free equilibrium. For the other direction, we show that
all revenue-optimal efficient equilibria are envy-free.

Theorem 9 For any AdAuctions instance such that αi >
αi+1∀i, all revenue-optimal efficient equilibria are envy-free.
Moreover, we can write the revenue optimal efficient equi-
librium explicitly as function of α,v recursively as follows:

bn = min

{

vn,
αn−1 − αn

αn−1
vn−1

}

,

bi = min

{

vi,
αi−1 − αi

αi−1
vi−1 +

αi

αi−1
bi+1

}

∀i < n.

Proof. Given an efficient equilibrium b, if it is not envy-
free, we show that we can improve revenue by slightly in-
creasing one of the bids. If the equilibrium is not envy-free,
there is at least one player that envies the player above, i.e.

αi(vi − bi+1) < αi−1(vi − bi).

As pointed out in [7], if in an efficient equilibrium no player
envies the above slot (i.e. no player i wants to take the above
slot i− 1 by the price per click player i is paying) then the
equilibrium is envy-free.

Let i be the player with the smallest index that envies slot
i− 1. Consider the bid profile b′ such that b′j = bj for j 6= i
and b′i = bi + ǫ. We will verify that the Nash inequalities
for player i− 1 still hold when ǫ > 0 is sufficiently small. In
other words, we will show that no Nash inequality for player
i− 1 holds with equality in b.

For slots j > i− 1, notice that

αj(vi − bj+1) ≤ αi(vi − bi+1) < αi−1(vi − bi)

where the first is a standard Nash inequality and the second
is the hypothesis that player i envies the above slot. Now,
since vi−1 > vi in an efficient equilibrium, we have

αj(vi−1 − bj+1) < αi−1(vi−1 − bi).

For slots j < i − 1, we use the fact that player i is the
first envious player. Also, without loss of generality, we can
assume player 1 bids v1. Therefore we need to verify the
Nash inequalities only for j = 2, 3, . . . , k − 1. We have

αi−1(vi − bi) ≥ αj(vi − bj+1) > αj(vi − bj)

where the first inequality comes from the fact that player
i−1 doesn’t envy any player j above him and the second in-
equality comes from the fact that bj > bj+1, since otherwise
the player in slot j would envy the player in slot j− 1. This
shows that the revenue optimal equilibrium is envy free.

To see that the bid profile defined in the theorem is op-
timal, we need to show the following things about this bid
profile b: (i) it is in Nash equilibrium, (ii) it is envy free,
and (iii) no other efficient Nash equilibrium generates higher
revenue. Begin by noticing that if b is Nash, then player
i − 1 doesn’t want to take slot i, for all i, and therefore
αi−1(vi−1 − bi) ≥ αi(vi−1 − bi+1) and this is satisfied by

definition by the bid vector presented. Notice also that this
series of inequalities implies an upper bound on the maxi-
mum revenue in an efficient equilibrium and this bound is
achieved exactly by the bid profile defined above.

Furthermore, for all j ≤ i − 1 we have αi−1(vj − bi) ≥
αi(vj − bi+1) therefore by composing this expression with
different values of i and j, it is straightforward to show that
no player can profit by decreasing his bid. We prove that
no player can profit by overbidding as a simple corollary of
envy-freeness. For that, we need to prove that

αi(vi − bi+1) ≥ αi−1(vi − bi).

If bi = vi than this is trivial. If not, then substitute the
expression for bi and notice it reduces to vi−1 ≥ vi. Now,
this proved local envy-freeness, what implies that no player
wants the slot above him by the price he player above him
is paying. This in particular implies that no player wants to
increase his bid to take a slot above.

5.3 Cost of efficiency: definition and example
Next we will analyze the relation between revenue and

efficiency in GSP auctions.
We define the cost of efficiency for a given profile of click-

through-rates as

CoE(α) = max
v

maxb∈Nash(α,v) R(b)

maxb∈EffNash(α,v) R(b)

where Nash is the set of all bid profiles in Nash equilibrium
and EffNash is the set of all efficient Nash equilibrium.

First we give examples in which CoE(α) > 1, in which
case all revenue-optimal equilibria occur at inefficient equi-
libria. Our example will have n = 3 slots and advertis-
ers. The click-through rates are given by α = [1, 2

3
, 1
6
] and

the agent types are v = [1, 7
8
, 6
8
]. In this case, the best

possible revenue generated by an efficient outcome is given
by 1

3
+ 7

8
≈ 1.20833 (this can be calculated using the for-

mula in Theorem 9). However, for the (inefficient) allocation
π = [2, 1, 3], there is an equilibrium that generates revenue
1.21528.

In Figure 2 we calculate this value empirically for each
α = [1, α2, α3], where each αi is an integer multiple of 0.01
in [0, 1]. In all cases we found that 1 ≤ CoE(α) < 1.1. The
color of (α1, α2) in the graph corresponds to CoE(1, α2, α3),
where blue represents 1 and red represents 1.1. By solving a
constrained non-linear optimization problem, one can show
that the worst CoE for 3 slots is 1.09383.

5.4 Efficiency Versus Revenue when Click-
Through-Rates are Convex

We now present a condition on α that implies CoE(α) =
1. Our condition is that the click-through-rates are convex,
meaning that αi − αi+1 ≥ αi+1 − αi+2 for all i. We note
that most models for CTRs studied in the literature satisfy
convexity, such as exponential CTRs [15] and Markovian
user models [1].

Theorem 10 If click-through-rates α are convex then there
is a revenue-maximizing Nash equilibrium that is also effi-
cient.

Our proof follows from a local improvement argument:
given an instance with convex click-through-rates and an



Figure 2: Cost of efficiency for α = [1, α2, α3]: in the
plot, blue means 1.0 and red means 1.1.

equilibrium that is not efficient, we show how to either im-
prove it revenue or its welfare. A key step of the proof is
bounding the maximum revenue possible in equilibrium for
a given allocation, extending Theorem 9 to inefficient allo-
cations.

Proof. Let b be the revenue maximizing efficient Nash
equilibrium. Fix an allocation π and let b′ be an equilibrium
under allocation π. We say that b is saturated for slot i
if bi = vi. We start by presenting the proof of the theorem
under the simplifying assumption that no slot is saturated
in the maximum revenue equilibrium..

Under the no-saturation assumption, Theorem 9 implies

R(b) =
∑

i

αibi+1 =
∑

i

∑

j≥i

(αj − αj+1)vj . (2)

Notice that we can view this expression as a dot product
of two vectors where one has elements of the form vi and
other has elements in the form αj − αj+1. Notice also that
due to the convexity assumption, this is a dot product of two
sorted vectors. Now, for b′, we will bound revenue as follows.
Define m(π, i, j) = max{π(i), π(i + 1), π(i + 2), . . . , π(j)}.
Let p be such that the k = i, i + 1, . . . , i + p are all the
indices such that m(π, i, k) = π(i). Now, notice that the
player in slot i doesn’t want to take slot i+ p+ 1, so

αi(vπ(i) − b′π(i+1)) ≥ αi+p+1(vπ(i) − b′π(i+p+2)).

This implies

αib
′
π(i+1) ≤ αi+p+1b

′
π(i+p+2) + (αi − αi+p+1)vπ(i)

= αi+p+1b
′
π(i+p+2) +

i+p
∑

j=i

(αj − αj+1)vm(π,i,j).

We can now apply recursion to conclude that αib
′
π(i+1) ≤

∑

j≥i
(αj − αj+1)vm(π,i,j), and hence

R(b′) =
∑

i

αib
′
π(i+1) ≤

∑

i

∑

j≥i

(αj − αj+1)vm(π,i,j). (3)

Notice that equation (3) can also be written as a dot prod-
uct between two vectors of type vi and αj − αj+1. If we
sort the vectors, we see that the (αj − αj+1)-vector is the
same in both (2) and (3). Moreover, the sorted vector of
vj for equation (3) is dominated by that of equation (2), in
the sense that it is pointwise smaller. To see this, simply
count how many times we have one of v1, . . . , vi appear in
both vectors for each index i: for equation (2) they appear
∑i

j=1 j times, whereas for equation (3) they appear at most
∑i

j=1 1+max{p | m(π(j, j+p)) ≤ i} ≤
∑i

j=1 j times. Since

the (αj − αj+1)-vectors are the same in both equations, the
vi vector in the first equation dominates the order and in
the first equation both vectors are sorted in the same order,
so it must be the case that R(b) ≥ R(b′).

It remains to remove our simplifying assumption about
saturation and prove the general result. Let b be the opti-
mal efficient equilibrium and let S ⊆ [n + 1] be the set of
saturated bids, including n+ 1 (where we consider a ”fake”
player n + 1 with bn+1 = vn+1 = 0), i.e., i ∈ S iff bi = vi.
Let S(i) = min{j ∈ S; j > i}.

Given an allocation π, we wish to define an upper bound,
Rπ , on the revenue of a bid profile that induces allocation
π at equilibrium. To this end, we define

Bπ(j) =



















αS(j)−1vS(j) +
∑S(j)−2

i=σ(j)
(αi − αi+1)vm(π,σ(j),i)

if σ(j) ≤ S(j) − 1

αS(j)−1vS(j) − vj(αS(j)−1 − ασ(j))

if σ(j) ≥ S(j) − 1

We then define

Rπ =
∑

j

Bπ(j).

We claim that this is, indeed, an upper bound on revenue.
Moreover, this bound is tight for revenue at efficient equi-
libria (i.e. when π is the identity id).

Claim 11 If bid profile b induces allocation π at equilib-
rium, then R(b) ≤ Rπ.

Claim 12 There exists an efficient equilibrium with revenue
Rid.

Using these two claims we want to argue that id is the
permutation that maximizes Rπ and therefore we can show
that for all inefficient bid profile b′ we have

R(b′) ≤ Rπ ≤ Rid = R(b).

To show this, consider some permutation π. Let j = max{k :
π(k) 6= k} and define a permutation π′ such that π′(k) = k
for k ≥ j and π′(k) = π(k) for k < σ(j) and π′(k) = π(k+1)
for σ(j) ≤ k < j. Essentially this is picking the last player
that is not allocated to his correct slot and bring him there.
Now, if we prove that Rπ′ ≥ Rπ, then we are done, since
we can repeat this procedure many times and get to id.

Claim 13 Rπ′ ≥ Rπ.

This completes the proof, subject to our claims, which we
prove in Appendix C.
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APPENDIX

A. BAYESIAN REVENUE WITH WELL-
SEPARATED CLICK-THROUGH-RATES

Another way to bound the revenue of GSP in settings of
incomplete information, without imposing reserve prices, is
to assume that the slot click-through-rates are well sepa-
rated, in the sense of [15]. We say that click-through-rates
are δ-well separated if αi+1 ≤ δαi for all i.

Lemma 14 If click-through-rates are δ-well separated, then
bidding bi(vi) < (1− δ)vi is dominated by bidding (1− δ)vi.

Proof. Suppose player i bids bi < (1 − δ)vi. If he in-
creases his bid to b′i = (1 − δ)vi then with some proba-
bility he still gets the same slot (event S) and with some
probability he gets a better slot (event B). Then clearly
E[ui(bi, b−i)|vi] ≤ E[ui(b

′
i, b−i)|vi] since the expectation con-

ditioned to S is the same and conditioned to B it can only
increase by changing the bid to b′i. To see that, let απ(i)

be the slot player i gets under bi and απ′(i) the slot he gets

under b′i. Conditioned on B we know that απ′(i) ≥ δ−1απ(i),
and this generates value for bidder i of at least απ′(i)(vi−b′i),
while the value with bid bi was at most απ(i)vi, which im-
plies the claim:

E[ui(bi, b−i)|vi, B] ≤ E[απ(i)vi|vi, B] ≤ E[δαπ′(i)vi|vi, B] =

= E[απ′(i)(vi − (1− δ)vi)|vi, B] ≤

≤ E[ui(b
′
i, b−i)|vi, B].

Recall that under truthful bidding, the revenue of GSP is
at least the revenue of VCG. If one eliminates the strategies



bi(vi) < (1 − δ)vi from the players strategy set, then it is
easy to see that any Bayesian-Nash equilibrium b has high
revenue.

Corollary 15 If click-through-rates are δ-well separated, and
all players play undominated strategies, then

Ev[R(b(v))] ≥ (1− δ)Ev[R
V CG(v)].

Further, for any reserve price r, we also get

Ev[Rr(b)] ≥ (1− δ)Ev[R
V CG
r (v)].

Next we consider whether this bound on GSP revenue,
with respect to the expected GSP revenue when all players
report truthfully, continues to hold if agents do not elim-
inate dominated strategies. That is, we consider settings
of limited rationality in which players may not be able to
find dominated strategies. If we allow players to use dom-
inated strategies, then we might have equilibria with very
bad revenue compared to the expected revenue when agents
bid truthfully, as one can see in the following example:

Example. Consider two players with iid valuations vi ∼
Uniform([0, 1]) and two slots with α = [1, 1− ǫ]. Then VCG
generates revenue E[RV CG(v)] = E[ǫmin{v1, v2}] = O(ǫ),
and if agents report truthfully the GSP auction generates
revenue E[min{v1, v2}] = O(1). However, consider the fol-
lowing equilibrium:

b1(v1) =

{

ǫ(1− δ), v1 ≥ ǫ(1− δ)

ǫv1, v1 < ǫ(1− δ)

b2(v2) =











ǫ, v2 ≥ 1− δ

ǫ2(1− δ), ǫ(1− δ) ≤ v2 < 1− δ

ǫv2, v2 < ǫ(1− δ)

It is not hard to check that this is an equilibrium. In fact,
for two player GSP in the Bayesian setting, playing (α1 −
α2)vi/α1 is a best reply - and any bid that gives the player
the same outcome is also a best reply. So, in the above
example, one can simply check that the bids generate the
same utility as bidding bi(vi) = ǫvi. This example generates
revenue ER(b) = O(ǫ(ǫ + δ)), so taking δ = O(ǫ) in the
above example give us O(ǫ2) revenue.

However, this is a feature of having only 2 players, as
shown in the following theorem, which is a version of Corol-
lary 15 that doesn’t depend on eliminating dominated strate-
gies.

Theorem 16 With n players with iid valuations vi and δ-
well separated click-through-rates, then for all Bayes-Nash
equilibria b in which agents do not overbid,

E[R(b)] ≥
n− 2

n
(1− δ)E[RV CG(v)].

Proof. We will prove the stronger result that the ex-
pected GSP revenue at equilibrium is within a factor of
n−2
n

(1− δ) of the expected GSP revenue when agents report
truthfully. We first claim that, for a profile b in Bayesian-
Nash equilibrium and any two players i and j, we have that

Pv∼F [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] = 0.

To see this, suppose the contrary. Then there is ǫ′ ≪ ǫ such
that if we take F ′ = F |[v0−ǫ′,v0+ǫ′] then

Pv∼F ′ [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] > 0.

For ǫ′ small enough v0 = v0 − ǫ and some ǫ′′ < ǫ, we have

Pv∼F ′ [bi(v) < (1− δ)v0 − ǫ′′, bj(v) < (1− δ)v0 − ǫ′′] > 0.

Now pick vi, vj in this interval such that Pv∼F ′ [bi(v
i) ≤

bi(v) < (1 − δ)v0] > 0 and the same for j. By lemma 14,

playing (1 − δ)vi is a best response, then for player j for
example, it can’t be the case that any of the other players
play between bj(v

j) and (1− δ)vj with positive probability.
Therefore

Pv∼F ′ [bj(v) ∈ [bi(v
i), (1− α)vi)] = 0

Pv∼F ′ [bi(v) ∈ [bj(v
j), (1− α)vj)] = 0

but notice this is a contradiction. This completes the proof
of the claim.

Now, we can think of the procedure of sampling v iid from
F in the following way: sample v′′i ∼ F iid, let v′i be the
sorted valuations, and then apply a random permutation
τ ∈ Sn to the values so that vi = v′τ(i). Notice that v is

iid and now, notice that with ≥ 1 − 2
n

probability, v′i and
v′i+1 will generate (1− δ)v′i and (1 − δ)v′i+1 bids producing
(1− δ)αiv

′
i+1 revenue, therefore

E[R(v)] ≥ E

[

∑

i

(

1−
2

n

)

(1− δ)αiv
′
i+1

]

≥
n− 2

n
(1− δ)E

[

RV (v)
]

.

B. PROPHET INEQUALITY
For completness, we include a short proof of the Prophet

Inequality, which was used in Lemma 3. The proof follows
[11].

Theorem 17 (Prophet Inequality [11]) Given indepen-
dent random variables z1, . . . , zn if one defines t as the so-
lution of the equation t =

∑n

i=1 E(zi − t)+, then by defining
yt = zi, where i is the smallest index such that zi ≥ t, and
zero if max zi < t, then:

E[yt] ≥
1

2
E[max

i
zi]

Proof. We can upper bound E[maxi zi] as :

E[max
i

zi] ≤ t+ E[max
i

(zi − t)+] ≤

≤ t+ E[
∑

i

(zi − t)+] = 2t

and lower bound E[yt] as:

E[yt] = tP(max
i

zi ≥ t)+

∑

i

E[(zi − t)+| max
j=1..i−1

zj < t]P( max
j=1..i−1

zj < t) ≥

≥ tP(max
i

zi ≥ t) +
∑

i

E[(zi − t)+]P(max
i

zi < t) = t

Notice that since t is increasing and
∑n

i=1 E(zi − t)+ is
decreasing, a solution always exists if each zi has a distri-
bution that has positive density everywhere. If this is not



the case, the prophet inequality still holds by taking t to be
either the supremum of {t : t ≤

∑n

i=1 E(zi − t)+} or the
infimum of {t : t ≥

∑n

i=1 E(zi − t)+} (whichever results in
larger E[yt]).

C. OMITTED PROOFS FROM SECTION 5
We now prove the claims from the proof of Theorem 10.

Proof of Claim 11 : We will show that for all b′ inducing
allocation π, we have ασ(j)b

′
σ(j)+1 ≤ Bπ(j). For σ(j) =

S(j) − 1, we use the fact that b′σ(j)+1 = b′S(j) ≤ vS(j). For
σ(j) < S(j)− 1 the result follows in the same way as in the
unsaturated case. For σ(j) > S(j)− 1, we use the fact that
player j doesn’t want to take slot j and therefore

ασ(j)(vj−b′σ(j)+1) ≥ αS(j)−1(vj−b′S(j)−1) ≥ αS(j)−1(vj−vS(j))

since

b′S(j) ≤ min{vπ(1), . . . , vπ(S(j)−1)} ≤ vS(j)

and σ(j) > S(j)− 1 so one of the players with value ≤ vS(j)

must be among the first S(j)−1 slots. Reordering the Nash
inequalities above gives us the desired result.

Proof of Claim 12 : This claim follows from the formula
defining the optimal-revenue efficient equilibrium in the pre-
vious section.

Proof of Claim 13 : Note first that Bπ(k) = Bπ′(k) for
all k > j. Moreover, for any k with σ(k) < σ(j), we will
have σ′(k) = σ(k). In this case, either S(k) < σ(k) in which
case Bπ′(k) = Bπ(k), or else

Bπ(k) = αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i) ≥

≥ αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)

= Bπ′(k).

It remains to consider k is such that σ(j) ≤ σ(k) ≤ j;
that is, those players k such that σ(k) 6= σ′(k). For each
such player, we will consider the difference between Bπ(k)
and Bπ′(k). First note that, for player j, we have

Bπ(j) −Bπ′(j)

=



αS(j)−1vS(j) +

S(j)−2
∑

i=σ(j)

(αi − αi+1)vm(π,σ(j),i)





−



αS(j)−1vS(j) +

S(j)−2
∑

i=σ′(j)

(αi − αi+1)vm(π′,σ′(j),i)





=

j−1
∑

i=σ(j)

(αi − αi+1)vj

For k 6= j, we claim that Bπ′(k) −Bπ(k) ≥ vj(ασ(k)−1 −
ασ(k)). We proceed by two cases. First, if S(k) ≤ σ(k), we
have

Bπ′(k)−Bπ(k) =
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ′(k))
)

−
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ(k))
)

= vk(ασ(k)−1 − ασ(k)) ≥ vj(ασ(k)−1 − ασ(k))

Second, if S(k)− 1 > σ(k), then we have

Bπ′(k)−Bπ(k)

=



αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′ ,σ′(k),i)





−



αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)





= (αS(k)−2 − αS(k)−1)vm(π′,σ′(k),S(k)−2)

+

S(k)−3
∑

i=σ′(k)

vm(π′,σ′(k),i)[(αi − αi+1)− (αi+1 − αi+2)]

≥ vj(αS(k)−2 − αS(k)−1)

+

S(k)−3
∑

i=σ′(k)

vj [(αi − αi+1)− (αi+1 − αi+2)]

= vj(ασ(k)−1 − ασ(k))

Notice that we strongly use the fact that click-through-rates
are convex in the last inequality to ensure that (αi−αi+1)−
(αi+1 − αi+2) ≥ 0.

Therefore, taking the sum over all k with σ(j) ≤ σ(k) ≤ j,
we have

∑

k:σ(j)<σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥

j−1
∑

i=σ(j)

vj(αi − αi+1)

= Bπ(j)−Bπ′(j)

so that
∑

k:σ(j)≤σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥ 0.

Combining this with the fact that Bπ′(k) ≥ Bπ(k) for all k
with σ(k) < σ(j) or σ(k) > j, we conclude

Rπ′ =
∑

k

Bπ′(k) ≥
∑

k

Bπ(k) = Rπ

as desired.


