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ABSTRACT
The Generalized Second Price (GSP) auction is the primary
method by which sponsered search advertisements are sold.
We study the performance of this auction in the Bayesian
setting for players with correlated types. Correlation arises
very naturally in the context of sponsored search auctions,
especially as a result of uncertainty inherent in the behaviour
of the underlying ad allocation algorithm. We demonstrate
that the Bayesian Price of Anarchy of the GSP auction is
bounded by 4, even when agents have arbitrarily correlated
types. Our proof highlights a connection between the GSP
mechanism and the concept of smoothness in games, which
may be of independent interest.

For the special case of uncorrelated (i.e. independent) agent
types, we improve our bound to 2(1−1/e)−1 ≈ 3.16, signifi-
cantly improving upon previously known bounds. Using our
techniques, we obtain the same bound on the performance
of GSP at coarse correlated equilibria, which captures (for
example) a repeated-auction setting in which agents apply
regret-minimizing bidding strategies. Moreoever, our anal-
ysis is robust against the presence of irrational bidders and
settings of asymmetric information, and our bounds degrade
gracefully when agents apply strategies that form only an
approximate equilibrium.
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1. INTRODUCTION
The sale of advertising space is the primary source of rev-
enue for many providers of online services. This is due, in
part, to the fact that providers can tailor advertisements to
the preferences of individual users. A search engine, for ex-
ample, can choose to display ads that synergize well with a
query being searched. However, such dynamic provision of
content complicates the process of selling ad space to poten-
tial advertisers. The now-standard method has advertisers
place bids – representing the amount they would be will-
ing to pay per click – which are resolved in an automated
auction whenever ads are to be displayed.

By far the most popular bid-resolution method currently in
use is the Generalized Second Price auction (GSP), a gen-
eralization of the well-known Vickrey auction. In the GSP,
there are multiple ad “slots” of varying appeal (i.e. slots at
the top of the page are more effective). Advertisers are as-
signed slots in order of their bids, with the highest bidders
receiving the best slots; each advertiser then pays an amount
equal to the bid of the next-highest bidder. While simple
to understand and use, the GSP has some notable draw-
backs: unlike the Vickrey auction it is not truthful, and it
does not generally guarantee the most efficient outcome (i.e.
the outcome that maximizes social welfare). Nevertheless,
the use of GSP has been extremely successful in practice.
This begs the question: are there theoretical properties of
the Generalized Second Price auction that would explain its
prevalence?

Since the GSP auction is invoked every time a user queries
a keyword of interest, it is best characterized as a repeated
auction in which players repeatedly bid for ad slots. How-
ever, modeling equilibrium strategies in a repeated game of
this nature is notoriously difficult; optimal bidding strategies
must account for threatened behaviour in future rounds, op-
timal exploration of the bidding space, and so on. A common
simplification used in the literature is to focus on auctions
for a single keyword, and suppose that agents will quickly
learn each others’ valuations and reach a stationary equi-
librium. Under this assumption, the stationary equilibrium
would correspond naturally to a Nash equilibrium in the
full information, one-shot version of the GSP auction [7]. It
has therefore become common practice to study pure, full-
information equilibria of the one-shot game, as an approxi-



mation to expected behaviour in the more general repeated
game [6, 24, 20].

In reality, however, the set and types of players can vary
significantly between rounds of a GSP auction. The reason
for this is that each query is unique, in the sense that it is
defined not only by the set of keywords invoked but also the
time the query was performed, the location and history of
the user and many other factors. This context is taken into
account by an underlying ad allocation algorithm, which is
controled by the search engine. The ad allocation algorithm
not only selects which players will participate in an auction
instance, but also assigns a quality factor to each player: a
score that measures how likely that participant’s ad will be
clicked for that query. These quality factors are then used to
scale the bids of the advertisers. The effective bid and effec-
tive type of a player are therefore random variables, which
can be thought as the original values times some exogenous
quality score. Thus, even if agents converge to a station-
ary bidding pattern, it is not necessarily the case that this
implies full certainty about agent types in each round.

The uncertainty about the types of other agents can be mod-
elled in a Bayesian, partial information setting. Bayes-Nash
equilibria for GSP have been studied previously [8, 19], but
these works require that valuations are drawn from inde-
pendent distributions. However, the independence assump-
tion fails to capture the source of randomness due to query
context and the ad allocation algorithm, which inherently
introduces correlations among agent values. Our main con-
tribution is to extend the analysis of quality of outcomes
of Bayesian GSP to cases where player values are arbitrar-
ily correlated, thereby capturing sources of uncertainty that
occur in practical sponsored search auctions.

Our techniques are general enough to apply even when our
model is extended to capture various additional features of
agent behaviour. For instance, there are different types of
players in the AdMarkets, which may have differing degrees
of information about their competitors. Some smaller play-
ers (such as individual advertisers) might be clueless about
the valuations of the other players and expected behaviour
of quality scores, while others (say bidding agencies or large
companies with web advertising departments) may have a
much better understanding of how individual rounds of the
auction will proceed. Even among those, there are various
levels of market research one can perform. Our bound on
social efficiency in the Bayesian model holds in settings with
this natural asymmetry in information.

One of the fundamental assumptions in auction analysis is
that all players are perfectly rational, i.e., utility optimizers.
However, in reality (and especially in large online settings),
it is natural to assume that some fraction of the players
participating in an AdAuction might have particularly un-
sophistcated bidding strategies. In fact, some agents may
not even play at equilbrium in the single-shot approxima-
tion of the GSP auction, or may only be able to converge to
an approximate equilibrium. We discuss the robustness of
our bounds to the presence of players bidding with limited
(or no) rationality.

We also consider an equilibrium model suited to long-run

bidder behaviour in GSP, where it is not required that agents
converge to a stable equilibrium. Namely, returning to the
repeated-game form of GSP, we consider situations in which
agents play in order to minimize regret. Such strategies
are not necessarily in equilbrium in the repeated game, but
capture the intuition that agents attempt to learn benefi-
cial bidding strategies over time. Roughly speaking, such a
model assumes that agents observe the bidding patterns of
others and modify their own bids in such a way that their
long-term performance approaches that of a single optimal
strategy chosen in hindsight. It is well-known from learn-
ing theory that such regret minimization is easy to achieve
via simple bidding techniques [11]. We demonstrate that
our techniques apply to this setting and bound the Price
of Total Anarchy [2], which is the ratio between the social
welfare of the optimal allocation and the average social wel-
fare obtained by GSP when agents minimize regret over a
sufficiently long number of rounds.

Results. Our main result is a bound on the social welfare
obtained at Bayes-Nash equilbrium for the GSP auction.
Specifically, we show that the Bayesian Price of Anarchy for
GSP is at most 4 for correlated valuations. At the heart
of this proof lies a structural characterization of the GSP
auction that has a flavor similar to the characterization of
smooth games introduced by Roughgarden [23], even though
it is known that GSP is not a smooth game. Furthermore,
if valuations can be assumed to be independent, we can im-
prove this bound to 2(1 − 1/e)−1 ≈ 3.164. This improves
upon the previous best-known bounds of 8 for BNE and 4
for (mixed) NE [19].

Perhaps just as important as the improved bounds, however,
is the straightforward and robust nature of our analysis. In
particular, our results extend to give the same bound for
coarse correlated equilibria (see Section 4.2), which implies
that the social welfare when agents play repeatedly in order
to minimize total regret is within a 2(1−1/e)−1 factor of the
optimal social welfare. Also, we prove that the factor of 4 for
agents with correlated distributions continues to hold even if
agents have asymmetric access to distributional information,
in the form of exogenously provided signals.

Moreover, our results are resilient against the presence of
irrational agents, in the following sense. Suppose that, in
addition to the rational participants in the auction, there is
also some set of agents who apply arbitrary strategies. We
can view these as irrational participants who do not under-
stand how to bid strategically. Note that, in such a setting, it
is not possible for an auction to guarantee a fraction of the
social welfare obtainable from the irrational bidders; after
all, a bidder with very large value may decide (irrationally)
to bid 0 and effectively not participate in the auction. What
we can show, however, is that the presence of the irrational
bidders does not interfere with the auction’s ability to ap-
proximate the welfare obtainable from the rational bidders.
That is, the ratio of the optimal social welfare of the ra-
tional bidders to the total social welfare obtained at any
BNE is at most 2(1 − 1/e)−1 ≈ 3.164. This result requires
an assumption on the play of the irrational bidders, which
is that no player bids more than his true value. We feel
that this is a reasonable assumption, as overbidding is a



dominated strategy that is easily avoided; we therefore view
the irrational bidders as novice or uninformed participants
who would avoid dominated strategies, rather than truly
adversarial agents. Finally, if rational agents are limited in
their rationality in that they can be assumed only to reach a
δ-approximate equilibrium, our welfare bounds continue to
hold with the addition of an extra factor of (1 + δ).

Our results hold for a standard model of separable click-
through rates, where the probability that a user clicks on
an advertisement j in slot i is of the form αiγj . That is,
it is a product of two separable components: one for the
advertiser, and one for the slot. For ease of exposition, we
will focus on the special case that γj = 1 for all j. However,
we note that our results extend to the more general case of
separable click-through rates.

Related work. In recent years there has been a surge of
work on algorithmic mechanism design for sponsored search,
beginning with Mehta et al. [17, 16]. See the survey of La-
haie et al [13] for an overview of subsequent developments.
The GSP model applied in this manuscript is due to Edel-
man et al [6] and Varian [24].

The work most closely related to ours is that of Paes Leme
and Tardos, who also study equilibria of GSP [19]. They give
upper bounds on the Price of Anarchy in pure, mixed, and
Bayesian strategies; achieving bounds of 1.618, 4, and 8, re-
spectively. Our main result is a simplification and strength-
ening of their results for the mixed and Bayesian cases, as
well as an extension to different but related solution con-
cepts.

The study of Price of Anarchy for non-truthful auction mech-
anisms (specially in the Bayesian setting) is a quite suc-
cessful research line initiated by Christodoulou, Kovács and
Schapira [4] and developed in Borodin and Lucier [15], Lucier
[14], Paes Leme and Tardos [19] and most recently in the
work of Bhawalkar and Roughgarden [1]. To the best of
our knowledge, this is the first paper in that research line
whose Price of Anarchy bounds hold when player valuation
are drawn from a correlated distribution. In the study of op-
timal truthful mechanism design, correlated valuations have
recently been studied by Papadimitriou and Pierrakos [22]
and Dobzinski, Fu and Kleinberg [5].

Edelman et al [6] and Varian [24] study Envy-free equilib-
ria of GSP (a special case of Nash equilibrium) in the full
information setting. They demonstrate that such equilib-
ria exist, and that all such equilibria are socially optimal.
Gomes and Sweeney [8] study the Generalized Second Price
Auction in the Bayesian context. They show that, unlike
the full information case, there may not exist symmetric or
socially optimal equilibria in this model, and obtain suffi-
cient conditions on click-through-rates that guarantee the
existence of a symmetric and efficient equilibrium. Lahaie
[12] also considers the problem of bounding the social wel-
fare obtained at equilibrium, but restricts attention to the
special case that click-through-rate αi decays exponentially
along the slots with a factor of 1

δ
. Under this assumption,

Lahaie proves a price of anarchy of min{ 1
δ
, 1− 1

δ
}.

The study of regret-minimization goes back to the work of
Hannan on repeated two-player games [9]. Kalai and Vem-
pala [11] extend the work of Hannan to online optimization
problems, and Kakade et al [10] further extend to settings
of approximate regret minimization. Blum et al [2] apply
regret-minimization to the study of inefficiency in repeated
games, coining the phrase “price of total anarchy” for the
worst-case ratio between the optimal objective value and
the average objective value when agents minimize regret.

Many of the above solution concepts have been tied together
by Roughgarden [23], who showed that for a class of smooth
games the price of anarchy, Bayesian price of anarchy, and
price of total anarchy are identical. The smoothness crite-
rion is quite strong, and does not apply in general to the
GSP mechanism. However, we note that the methods used
to analyze mechanisms at Nash Equilibrium share a com-
mon flavour with the results for smooth games. As part of
the proof of our main result, we isolate a property related
to smoothness that encapsulates many of the insights that
drives our bounds.

In an independent work, Caragiannis et al [3] also improve
the bounds in [19]. The authors prove a bound of 1.282
for the Full Information setting, almost matching the 1.259
lower bounds, and improve and extend the techniques of
Paes Leme and Lucier [21] (a previous arXiv version of the
present paper), showing bounds of 2.310 for correlated equi-
libria in the Full Information setting and 3.037 for Bayes-
Nash equilibria with independent types.

2. PRELIMINARIES
We consider an auction with n advertisers and n slots1. Each
advertiser i has a private type vi, representing his or her
value per click received. The sequence v = (v1, . . . , vn) is
referred to as the type profile. We will write v−i for v ex-
cluding the ith entry, so that v = (vi,v−i).

An outcome is an assignment of advertisers to slots. An out-
come can be viewed as a permutation π with π(k) being the
player assigned to slot k. When advertiser i is assigned to
the k-th slot, he gets αkγi clicks, where α1 ≥ α2 ≥ . . . ≥ αn

are called click-through-rates and γi are called quality fac-
tors. Without loss of generality and for clarity of exposition,
we consider for the rest of the paper γi = 1 for all players.

A mechanism for this auction elicits a bid bi ∈ [0,∞) from
each agent i, which is interpreted as a type declaration, and
returns an assignment as well as a price pi per click for each
agent. We assume bi ≤ vi, since overbidding is clearly a
dominated strategy. If advertiser i is assigned to slot j, his
utility is αj(vi − pi), which is the number of clicks received
times profit per click. The social welfare of outcome π is
SW (π,v) =

∑

j αjvπ(j), the total value of the solution for

the participants. The optimal social welfare is OPT (v) =
maxπ SW (π,v).

We focus on a particular mechanism, the Generalized Second
Price auction, which works as follows. Given bid profile

1we handle unequal numbers of slots and advertisers by
adding virtual slots with click-through-rate zero or virtual
advertisers with zero value per click.



b, the auction sets π(k) to be the advertiser with the kth
highest bid (breaking ties arbitrarily). That is, GSP assigns
slots with higher click-through-rate to agents with higher
bids. Payments are then set according to pi = bπ(π−1(i)+1).
That is, the payment of the kth highest bidder is precisely
the bid of the next-highest bidder (where we take bn+1 = 0).
We will write ui(b) for the utility derived by agent i from
the GSP when agents bid according to b.

For the remainder of the paper, we will write π(b, j) to be
the player assigned to slot j by GSP when the agents bid ac-
cording to b. We will also write σ(b, i) for the slot assigned
to bidder i by GSP, again when agents bid according to b.
In other words, σ(b, ·) = π−1(b, ·). We write πi(b−i, j) to
be the player that would be assigned to slot j by GSP if
agent i did not participate in the auction. We will write
ν(v) for the optimal assignment of slots to bidders for value
profile v, so that ν(v, i) is the slot that would be allocated
to agent i in the optimal assignment2.

2.1 Pure and Mixed Nash Equilibrium
A (pure) strategy for agent i is a function bi : R≥0 → R≥0

that maps each private value to a declared bid. A mixed
strategy maps a private value to a distribution over bids,
corresponding to a randomized declaration. Given a value
profile v, we say that strategy profile b is a mixed Nash
equilibrium if, for all i and all alternative strategies b′i(·),

E[ui(bi(vi), b−i(v−i))] ≥ E[ui(b
′
i(vi), b−i(v−i))].

That is, each agent imaximizes his utility by bidding accord-
ing to strategy bi(·). We say this is a pure Nash equilibrium
if, in addition, all strategies are pure. We define the (mixed)
Price of Anarchy to be the worst-case ratio between social
welfare in the optimum and expected social welfare in GSP
across all valuation profiles and all mixed Nash equilibria:

sup
v,b(·)NE

OPT (v)

Eb[SW (π(b(v)),v)]
.

2.2 Bayesian setting
In a Bayesian setting, we suppose that each agent’s type is
drawn from a publicly known (possibly correlated) distribu-
tion, i.e., v ∼ F. We then say that strategy profile b is a
Bayes-Nash equilibrium for distributions F if, for all i, all
vi, and all alternative strategies b′i,

Ev
−i|vi [ui(bi(vi),b−i(v−i))] ≥ Ev

−i|vi [ui(b
′
i(vi),b−i(v−i))]

That is, each agent maximizes his expected utility by bid-
ding in accordance with strategy bi(·), where expectation is
taken over the distribution of the other agents’ types and any
randomness in their strategies. We define the Bayes-Nash
Price of Anarchy to be the worst-case ratio between social
welfare in the optimum and social welfare in GSP across all
distributions and all Nash equilibria:

max
F,b(·)BNE

Ev∼F[OPT (v)]

Ev∼F,b(v)[SW (π(b(v)),v)]
.

2We note that, since GSP makes the optimal assignment for
a given bid declaration, we actually have that ν(v, i) and
σ(v, i) are identically equal. We define ν mainly for use when
emphasizing the distinction between an optimal assignment
for a value profile and the assignment that results from a
given bid profile.

2.3 Signals and Information Assymmetry
We define an extension of the setting above, incorporating a
Bayesian version of information assymmetry. In this model,
each player’s type consists of a value vi and a signal si drawn
from an arbitrary signal space. The signals can be thought of
as privately-gained insight that refines agent i’s conditional
distribution over the space of other agents’ types. It is pub-
licly known that (v, s) comes from a certain distribution F′,
which can be arbitrarly correlated. As a special case, one
could choose for the value of a player to be a function of his
signal (or even the vector of signals).

The presence of signals captures the notion that some agents
might have a better potential to infer the other players val-
uations than others, or may be endowed with priviledged
information. We do note, however, that agents are aware of
the bidding strategies b(·, ·) and the distribution F′, so that
agents can rationalize about the effects of signals upon the
bidding behaviour of their opponents.

In this model, a strategy is a bidding function mapping
(vi, si) to a distribution of possible bids. The bid profile
is a Bayes-Nash in the assymmetric information model if:

Ev
−i|vi,si [ui(bi(vi, si),b−i(v−i, s−i))] ≥

Ev
−i|vi,si [ui(b

′
i(vi, si),b−i(v−i, s−i))]

2.4 Repeated Auctions and Regret Minimiza-
tion

We now consider the GSP auction in a repeated setting. In
this model, the GSP auction is run T ≥ 1 times with the
same slots and agents. The private value profile v of the
agents does not change between rounds, but the agents are
free to change their bids. We write bti for the bid of agent
i on round t. We refer to D = (b1, . . . , bT ) as a declaration
sequence. We will write π(D) for the sequence of permuta-
tions generated by GSP on input sequence D. The average
social welfare generated by GSP is then SW (π(D),v) =
1
T

∑

t SW (π(bt),v).

The full range of equilibria in such a repeated game is very
rich, so we restrict ourselves to a particular non-equilibrium
form of play that nevertheless captures the intuition that
agents learn appropriate bidding strategies over time, with-
out necessitating convergence to a stationary equilibrium.

We say that declaration sequence D = (b1, . . . , bT ) mini-
mizes external regret for agent i if, for any fixed declaration
bi,

∑

t

ui(b
t
i, b

t
−i) ≥

∑

t

ui(bi, b
t
−i) + o(T ).

That is, as T grows large, the utility of agent i approaches
the utility of the optimal fixed strategy in hindsight. The
Price of Total Anarchy [2] is the worst-case ratio between
social welfare in the optimum and the average social wel-
fare obtained by GSP across all declaration sequences that
minimize external regret for all agents. That is, the price of
total anarchy is

lim
T→∞

max
v,D

OPT (v)

SW (π(D),v)



where the maximum is taken over declaration sequences that
minimize external regret for all agents.

We note that the above model can be generalized to ac-
count for player uncertainty between rounds. For instance,
one could assume that there is a large pool Ω of players, and
on each round t the ad allocation algorithm (modeled as a
randomized exogenous process) selects a subset of players
St ⊆ Ω to participate in the auction that round. In this
case, each player i ∈ Ω has a fixed valuation vi, but agents
are necessarily uncertain of the valuations (i.e. the identities)
of their opponents on each round. The notion of regret min-
imization extends readily to such partial-information set-
tings: if we write τ (T, i) for the set of rounds t ≤ T in
which player i is selected, we say that the bid sequence bti
minimizes external regret if, for all b′i,

∑

t∈τ(T,i)

ui(b
t
i, b

t
−i) ≥

∑

t∈τ(T,i)

ui(b
′
i, b

t
−i) + o(|τ (T, i)|).

Such a model more directly captures the fact that an auction
participant cannot perfectly predict the set of competitors
she will face on any given round. A more thorough discus-
sion of such generalized models appears in the full version
of this paper.

3. CORRELATED PRICE OF ANARCHY
Our main result is a bound of 4 on the Bayes-Nash PoA for
GSP, which holds even if we allow agent types to be arbitrar-
ily correlated. The same result holds for the Bayesian model
of information assymmetry as well - extending the proof to
this case is straightforward - but for clarity of exposition, we
will give the proof without considering signals.

Theorem 1 The Correlated Bayesian Price of Anarchy of
GSP is at most 4.

Our proof of Theorem 1 is related to the concept of smooth-
ness due to Roughgarden [23]. Write SW (s) for the so-
cial welfare generated by strategy profile s for some (implic-
itly defined) game. Roughgarden defines a game as (λ, µ)-
smooth if, for all pairs of strategy profiles s, s′, we have

∑

i

ui(s
′
i, s−i) ≥ λSW (s′)− µSW (s).

Roughly speaking, smoothness captures the property that if
strategy profile s′ results in a significantly larger social wel-
fare than another strategy profile s, then this gap in welfare
can be captured by the marginal increases in the individual
agents’ utilities when unilaterally switching their strategies
from s to s′.

Paes Leme and Tardos showed in [18] that GSP auction
is not smooth for any choice of parameters. The intuition
is that in a mechanism game, welfare is determined not by
strategy profiles directly, but through the intermediate space
of outcomes. Thus, even if a bidding strategy s′ yields an
outcome that is much more efficient than s, it may be that
the outcome does not change when any single agent deviates
from s to s′. Nevertheless, we now note that GSP satisfies
a conceptually weaker but related property: there is a par-
ticular strategy profile s′ that maximizes social welfare, and

for which a smoothness-like inequality holds for any other
strategy profile s.

Definition 2 (Semi-Smooth Games) We say that a game
is (λ, µ)-semi-smooth if there exists some s′ maximizing
the social welfare such that, for any strategy profile s,

∑

i

ui(s
′
i, s−i) ≥ λSW (s′)− µSW (s).

As we now demonstrate, the GSP auction corresponds to an
semi-smooth game.

Lemma 3 GSP in the full information setting is ( 1
2
, 1)-

semi-smooth.

Proof. Fix valuation profile v and agent i. Consider any
bid profile b and define b′i =

vi
2
. We claim that

ui

(vi
2
,b−i

)

+ αivπ(b,i) ≥
1

2
αivi.

Summing the above expression for all i gives us the desired
result. To see that the above expression holds, consider two
cases:

1. By switching his bid from bi(vi) to vi/2, player i wins
some slot j ≤ i. In this case ui(

vi
2
,b−i) ≥

1
2
αivi.

2. Otherwise, the player who wins slot i under bidding
profile b is bidding more than vi/2. In this case αivπ(i) ≥
1
2
αivi.

We now prove Theorem 1 using the semi-smoothness of
GSP. Notice that the statement of semi-smoothness doesn’t
place any restrictions on strategy profile b, and in particular
does not require that it be a Nash equilibrium. So, in the
Bayesian setting, for any type profile v and for any b(v),
Lemma 3 implies that

∑

i

ui(bi
′(vi),b−i(v−i)) ≥

1

2
OPT (v)− SW (π(b(v)),v).

for bi
′(vi) = vi/2.

A proof of Theorem 1 is now straightforward by taking ex-
pectations and using the Bayes-Nash inequality for a given
Bayes-Nash equilibrium strategy profile b:

E[SW (π(b(v)),v)] =
∑

i

EviEv
−i|vi [ui(bi(vi),b−i(v−i))]

≥
∑

i

EviEv
−i|vi [ui(bi

′(vi),b−i(v−i))]

≥
1

2
E[OPT (v)]− E[SW (π(b(v)),v)].

which proves the Price of Anarchy of 4.



4. INDEPENDENT VALUATIONS
We now wish to tighten the bound obtained in Theorem
1 beyond 4, for the special case that player valuations are
not correlated. Let us begin by describing the high-level
idea, and the way in which it relies on type independence.
We can rephrase the main idea of Theorem 1 as follows: at
equilibrium, for each bidder i, it must be that the expected
outcome for bidder i is no worse than the expected outcome
that results from applying any alternative strategy. In par-
ticular, this must be true for the strategy that prescribes
a bid equal to half of bidder i’s true value. This, in turn,
implies that the expected bid for slots much better than the
expected allocation to agent imust be at least vi/2, as other-
wise agent i would have incentive to deviate. However, this
suggests that, on average, a bidder with value at least vi/2
will obtain such high-valued slots, which makes up for any
loss in social welfare due to those slots not being assigned
to agent i.

The key to the above argument was in identifying an al-
ternative strategy for agent i to consider - namely, bidding
half of his true value - and using the fact that this alterna-
tive strategy either gives player i a high utility or the player
currently in slot i is paying a high price. This strategy has
the strong property that it does not depend on the expected
bids of the other agents; it is in this way that the argu-
ment is related to smoothness. However, more generally, we
may be able to obtain tighter bounds by reasoning about
strategies that are motivated by other agents’ behaviour at
equilibrium. In particular, it may be that a certain gap in
social welfare implies the existence of some agent with some
beneficial deviating strategy, but it might not be the case
that a single strategy leads to an improvement in utility in
every instance.

Indeed, what we will show is that if, for a given fixed val-
uation profile, the expected winning bid for some slot i is
sufficiently low, then there must exist a deviating strategy
for agent i that improves his welfare. The precise nature
of this strategy will depend on the particular strategies em-
ployed by the other agents. Note that this argument does
not immediately imply a bound on the expected welfare of
GSP, since the existence of a deviating strategy for agent
i conditions on agent i’s type, whereas the expected social
welfare is in expectation over all types. It is here that we use
independence to convert conditional bounds into bounds on
the overall expected social welfare.

In the remainder of the section we will first formalize the
above argument, then demonstrate that the analysis extends
to coarse correlated equilibria, outcomes of learning strate-
gies, and the presence of irrational agents.

4.1 Performance at Bayes-Nash Equilibrium
We are now ready to prove the following theorem.

Theorem 4 The Bayesian Price of Anarchy of GSP is at
most 2(1 − 1/e)−1 ≈ 3.164, assuming that agent types are
independently distributed.

The proof of Theorem 4 proceeds in two steps. We first
show that a structural property of bidding profiles implies

a bound on the social welfare obtained by GSP (Lemma 5).
We then show that this structural property holds at all BNE
of the GSP (Lemma 6).

Lemma 5 Suppose that v ∼ F and agents apply strategy
profile b(·). Suppose further that the following is true:

Ev
−i

[ασ(b(v),i)vi] + Ev
−i

[αkbπi(b
−i(v−i),k)

] ≥ γαkvi (1)

for all slots k, players i, and values vi. Then

Ev∼F[SW (π(b(v)),v)] ≥
1

2
γEv∼F[OPT (v)].

.

Lemma 6 At any BNE of GSP, (1) holds with γ = 1− 1
e
.

Lemma 5 and Lemma 6 immediately imply Theorem 4. Note
that it is in Lemma 5 that we make use of the assumption
that agent types are independent.

Proof of Lemma 5 : Fix some value profile v. For
notational convenience, let Γ be the induced distribution on
bid profiles b = b(v) when v ∼ F. Then for any player
i, value vi, and slot k, if we write bi = bi(vi), then we can
express (1) as:

Eb
−i

[ασ(b,i)vi] + Eb
−i

[αkbπi(b
−i,k)

] ≥ γαkvi.

This inequality essentially states that, under the bidding
strategies employed by the other agents, the expected value
of the slot obtained by agent i plus the expected bid required
to obtain slot k is at least γ times the value agent i would
obtain from slot k. Note that v−i does not appear in this
expression; bids b−i are taken to be drawn from induced
distribution Γ−i. Now, recalling that ν(v, i) is the slot as-
signed to player i in the optimal assignment for values v, we
can take k = ν(v, i) in the above inequality. We then have

Eb
−i

[ασ(b,i)vi] + Eb[αν(v,i)bπi(b
−i,ν(v,i))

] ≥ γαν(v,i)vi

for all v and all i, where we used the fact that strategy bi(·)
does not appear in the second term. Summing over all i
and taking expectation over v, we have

Ev∼F

[

∑

i

Eb
−i

[ασ(b,i)vi]

]

+

Ev∼F

[

∑

i

Eb[αν(v,i)bπi(b,ν(v,i))]

]

≥

≥ γEv∼F

[

∑

i

αν(v,i)vi

]

(2)

Consider each of the three expectations in (2). For the third
term, we note

Ev∼F

[

∑

i

αν(v,i)vi

]

= Ev∼F[OPT (v)].

For the first term, linearity of expectation and independence
of agent types implies

Ev∼F

[

∑

i

Eb
−i

[ασ(b,i)vi]

]

= Ev∼F

[

∑

i

ασ(b(v),i)vi

]

= Ev∼F[SW (π(b(v)),v)].



For the second expectation, notice that (again using type
independence):

Ev∼FEb∼Γ

[

∑

i

αν(v,i)bπi(b
−i,ν(v,i))

]

≤

Ev∼FEb∼Γ

[

∑

i

αν(v,i)bπ(b,ν(v,i))

]

= Eb∼Γ

[

∑

k

αkbπ(b,k)

]

which is at most Ev∼F[SW (π(v),v)].

We therefore conclude from (2) that 2Ev∼F[SW (π(v),v)] ≥
γEv∼F[OPT (v)], completing the proof.

Proof of Lemma 6 : Fix slot k, player i, and value vi.
We wish to show that

Ev
−i

[ασ(b(v),i)vi] + Ev
−i

[αkbπi(b
−i(v−i),k)

] ≥ γαkvi. (3)

The intuition is that if agent i’s expected welfare at equilib-
rium and the expected bid required to obtain slot k are both
very low compared to agent i’s value for slot k, then agent i
should attempt to deviate to a strategy aimed at obtaining
slot k. The complicating factor is that the bid needed to
win slot k is only known to be low in expectation, so it is
not immediately clear how agent i should optimally attempt
to win slot k. We must therefore bound the size of a gap in
welfare that implies the existence of a single strategy that
provides a benefit to player i in expectation.

For notational convenience we write W = Ev
−i

[ασ(b(v),i)vi]
note thatW is precisely the expected welfare of agent i given
that his type is vi. First note that if αkvi < W then (3) is
trivial. So we will consider αk ≥ W/vi. We will prove that

W + Ev
−i

[αkbπi(b
−i(v−i),k)

] ≥

≥ αkvi −W · log
αkvi
W

and then dividing everything by αkvi and using that log(x)
x

≤
1
e
we arrive at inequality (3).

Consider any bid b′i for agent i such that bi < b′i < vi. Then
for each slot k, since bid bi is utility-maximizing for agent i,
the utility of bidding b′i satisfies

W ≥ Ev
−i

[ui(b
′
i,b−i)].

Also, if agent i bids b′i and moreover it is true that bπi(b
−i,k)

<

b′i, then agent i will win a slot with at least αk clicks. Thus,

Ev
−i

[ui(b
′
i,b−i)] ≥ (vi − b′i)αkPv

−i
[bπi(b

−i(v−i),k)
< b′i].

Combining these two inequalities and substituting z = vi −
b′i, we get

Pv
−i

[vi − bπi(b
−i(v−i),k)

> z] ≤
W

z · αk
.

We are now able to estimate the expected value of vi −
bπi(b

−i,k)
. Since vi − bπi(b

−i(v−i),k)
≤ vi with probability

1, we have

E[vi − bπi(b
−i,k)

] =

∫ vi

0

Pv
−i

[vi − bπi(b
−i(v−i),k)

> z]dz

≤

∫ W/αk

0

1dz +

∫ vi

W/αk

W

αkz
dz

≤
W

αk
+

W

αk

(

log vi − log
W

αk

)

.

Multiplying both sides by αk and rearranging gives the re-
quired inequality.

4.2 Coarsely Correlated bids and Price of To-
tal Anarchy

Notice that the proof of the previous section applies even
in cases where agent bids are coarsely correlated. In such a
case, we can consider a common source of randomnessR and
each bidding function to be a function bi(vi, r), where r ∼ R.
We call a profile of bidding functions a coarse correlated
equilibrium if:

Ev
−i∼F

−i
[ui(bi(vi, r),b−i(v−i, r))] ≥

Ev
−i∼F

−i
[ui(b

′
i(vi, r),b−i(v−i, r))],∀i, vi, r

We still suppose vi ∼ Fi where Fi are independent distribu-
tions. In this case, F and R induce a distribution Γ on the
bids.

Adapting Lemma 6 to this context is straightforward. Now,
to adapt Lemma 5, we observe that the proof follows as
before, except that we must argue that

Eb
−i∼Γ

−i
[ασ(v,i)bπi(b

−i,σ(v,i))] = Eb∼Γ[ασ(v,i)bπi(b
−i,σ(v,i))].

However, this follows because the marginal distribution of
b ∼ Γ restricted to −i is precisely b−i ∼ Γ−i, as the shared
randomness fromR is not affected by restriction to a marginal
distribution.

We now note that the result from the previous section im-
plies a bound on the price of total anarchy for GSP. This fol-
lows because, whenever bidding sequence D = (b1, . . . ,bT )
minimizes regret for all agents, the bidding strategy with
shared randomness bi(vi, t) = bi

t(vi) for t ∈ [T ] is a coarse
correlated equilibrium. Lemmas 5 and 6 therefore imply
that, for all v,

Et∈[T ][SW (π(bt(v)),v)] ≥
1

2
(1− 1/e)OPT (v)

which implies that the price of total anarchy is bounded
by 2(1 − 1/e)−1. Thus, even when agents apply strategies
that minimize regret but do not necessarily converge to a
stationary equilibrium, we still obtain bounds on the average
social welfare obtained by GSP over many rounds.

4.3 Irrational Agents
We now consider a setting in which, in addition to the n ad-
vertisers who bid rationally, there are m “irrational” adver-
tisers who cannot be assumed to bid at equilibrium. Write



N for the set of rational advertisers, and M for the set of ir-
rational advertisers. Note that we still think of the irrational
advertisers as being true players, who still receive value per
click. The irrational bidders simply cannot be assumed to
apply optimal strategies; for example, they may not have ex-
perience with the GSP auction, or not know about historical
bidding patterns.

Given an outcome π (which is an assignment of these n+m
bidders to n + m slots), the definition of social welfare is
unchanged: it is SW (π,v) =

∑

i∈N∪M viαπ(i). We de-
fine the social welfare of bidders in N to be precisely that:
SWN (π,v) =

∑

i∈N viαπ(i). The optimal social welfare for
bidders in N is OPTN (v) = maxπ SWN(π,v).

We wish to show that the total social welfare obtained by
GSP is a good approximation to OPTN (v) when the play-
ers in N play at equilibrium and the players in M play ar-
bitrarily. That is, the addition of irrational players does
not degrade the social welfare guarantees of GSP had they
not participated. In order to make this claim, we must im-
pose a restriction on the behaviour of the irrational players:
that they do not overbid. In other words, we require that
bi(vi) ≤ vi for all i ∈ M and all vi. We feel this is a natu-
ral restriction: overbidding is easily seen to be a dominated
strategy (i.e. any strategy that bids higher than vi is domi-
nated by a strategy that lowers such bids to be at most vi).
Moreover, it is arguable that inexperienced bidders would
bid conservatively, and not risk a large payment with no
gain.3

Given that irrational agents do not overbid, we note that
our BPoA bounds go through in this setting almost without
change. In particular, our structural property (1) continues
to hold for all agents in N .

Lemma 7 Equation (1) holds with γ = 1− 1
e
for all i ∈ N .

Proof. This proof follows the proof of Lemma 6 without
change. Note that in that proof we used only the fact that
the bidding strategy of agent i is a best response, so the fact
that other agents may not bid at equilibrium does not affect
the argument.

The corresponding version of Lemma 5 then follows from (1)
just as in the setting without irrational agents, with only
minor modifications.

Lemma 8 If (1) holds for all i ∈ N , then

Ev∼F[SW (π(b(v)),v)] ≥
1

2
γEv∼F[OPTN (v)].

3This relies on the simplifying assumption that all bidders
have knowledge of their own private valuations. Admittedly,
this requires a certain level of sophistication and may be dif-
ficult to attain in practice. Our argument is thus limited to
imperfect strategy choice given perfect knowledge of types.
It remains open to extend this analysis to agents who may
misunderstand their own valuations.

Proof. Precisely as in the proof of Lemma 5, we obtain

Ev∼F

[

∑

i∈N

Eb
−i

[ασ(b,i)vi]

]

+

Ev∼F

[

∑

i∈N

Eb[αν(v,i)bπi(b,ν(v,i))]

]

≥

≥ γEv∼F

[

∑

i∈N

αν(v,i)vi

]

(4)

where we note that the summations are over agents in N .
Then, as in Lemma 5,

Ev∼F

[

∑

i∈N

αν(v,i)vi

]

= Ev∼F[OPTN (v)].

and

Ev∼F

[

∑

i∈N

Eb
−i

[ασ(b,i)vi]

]

= Ev∼F[SWN (π(b(v)),v)]

≤ Ev∼F[SW (π(b(v)),v)].

For the second expectation in (4), we require a slight devi-
ation from the previous argument. We notice that

Ev∼F,b∼Γ

[

∑

i∈N

αν(v,i)bπi(b
−i,ν(v,i))

]

≤ Ev∼FEb∼Γ

[

∑

i∈N

αν(v,i)bπ(b,ν(v,i))

]

= Eb∼Γ





∑

k:∃i∈N,ν(v,i)=k

αkbπ(b,k)





≤ Eb∼Γ

[

∑

k

αkvπ(b,k)

]

= Ev∼F[SW (π(v),v)].

We therefore conclude from (4) that 2Ev∼F[SW (π(v),v)] ≥
γEv∼F[OPTN (v)], completing the proof.

Together, Lemma 7 and Lemma 8 imply that the Bayesian
Price of Anarchy of GSP is at most 2(1 − 1/e)−1 even in
the presence of irrational bidders. Following the comments
in Section 4.2, we can apply the same argument to obtain
a matching bound on the Price of Total Anarchy with irra-
tional bidders.

4.4 Approximate Equilibria
It is commonly assumed that rational bidders apply strate-
gies at equilibrium. However, it may be that due to limits
on rationality or indifference between small differences in
utility, agents converge only on an approximate Bayes-Nash
equilibrium. Given type distribution F, we say that strategy
profile b is an ǫ-BNE if, for all agents i and all types vi,

Ev
−i

[ui(bi(vi),b−i(v−i))] ≥ (1−ǫ)Ev
−i

[ui(bi
′(vi),b−i(v−i))].

Note that our choice of the multiplicative definition of ap-
proximate equilibrium, motivated by the fact that we elected
not to scale values to lie in [0, 1].



We now claim that our bound for social welfare at equi-
librium depends on the Bayes-Nash equilibrium condition
in a continuous way, so that the bound degrades gracefully
as we increase the degree to which a bidding strategy only
approximates an equilibrium. Specifically, if agents apply
strategy profile b which forms an ǫ-BNE, for 0 ≤ ǫ < 1−1/e,
then the expected social welfare of GSP is within a factor of
2(1− ǫ− 1/e)−1.

The proof requires only a minor modification to the proof
of Theorem 4. Lemma 5 is not affected by this change. The
statement of Lemma 6 is then modified to γ = 1− ǫ − 1/e.
To obtain this bound, we need only note that the inequality
due to b being a BNE becomes

W ≥ (1− ǫ)Ev
−i

[ui(b
′
i,b−i)],

from which we conclude (in the same way as in the proof of
Lemma 6) that

(1− ǫ)E[vi − bπi(b
−i,k)

] ≤
W

αk
+

W

αk

(

log vi − log
W

αk

)

.

Multiplying through by αk and rearranging yields

E[ασ(b(v),i)vi]+E[αkbπi(b
−i,k)

] ≤ (1− ǫ)αkvi −W · log
αkvi
W

which implies the desired result, using that log(x)
x

≤ 1
e
.
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