
GROSS SUBSTITUTABILITY : AN ALGORITHMIC SURVEY

RENATO PAES LEME∗

Abstract. The concept of gross substitute valuations was introduced by Kelso and Crawford as
a sufficient conditions for the existence of Walrasian equilibria in economies with indivisible goods.
The proof is algorithmic in nature: gross substitutes is exactly the condition that enables a natural
price adjustment procedure – known as Walrasian tatônnement – to converge to equilibrium.

The same concept was also introduced independently in other communities with different names:
M\-concave functions (Murota and Shioura), Matroidal and Well-Layered maps (Dress and Terhalle)
and valuated matroids (Dress and Wenzel). Here we survey various definitions of gross substitutabil-
ity and show their equivalence. We focus on algorithmic aspects of the various definitions. In
particular, we highlight that gross substitutes are the exact class of valuations for which demand
oracles can be computed via an ascending greedy algorithm. It also corresponds to a natural discrete
analogue of concave functions: local maximizers correspond to global maximizers.

Finally, we discuss algorithms for the welfare problem (computing an optimal allocation of a set
of items when agents have gross substitute valuations) as well as the related problem of computing
Walrasian prices. We discuss approximation schemes based on the tatônnement procedure, linear
programming approaches and purely combinatorial strongly-polynomial time algorithms.

1. Gross substitutes and Walrasian tatônnement. The notion of gross sub-
stitutes was introduced by Kelso and Crawford [23] in order to analyze two sided
matching markets of workers and firms. Originally it was defined as a condition on
the gross product generated by a set of workers for a given firm, hence the name gross
substitutes. Such condition allowed a natural salary adjustment process to converge to
a point where each worker is hired by some firm and no worker is over-demanded. Gul
and Stacchetti [19] later use the same notion to analyze the existence of price equilib-
ria in markets with indivisible goods. For this survey, we adopt the Gul and Stacchetti
terminology and talk about buyers/items/prices instead of firms/workers/salaries as
in Kelso and Crawford.

Before we proceed, we fix some notation: we denote by [n] = {1, . . . , n} a set
of items (goods). A valuation over such items is a function v : 2[n] → R such that
v(∅) = 01. Given a price vector p ∈ Rn and a set S ⊆ [n], we denote p(S) =

∑
j∈S pj .

We will define vp(S) = v(S)− p(S) as the value of a subset S under the price vector
p. This corresponds to the utility of an agent with this valuation for acquiring such
set under those prices. Given disjoint sets S, T we define the marginal value of T
with respect to S as v(T |S) = v(T ∪ S) − v(S). We sometimes omit braces in the
representation of sets when this is clear from the context, for example, by v(i, j|S) we
denote v({i, j}|S).

An economy with indivisible goods is composed by a set [n] of items (goods) and
[m] of buyers (agents) where each agent i ∈ [m] has a valuation vi : 2[n] → R. We
use the notion of the demand correspondence to define an equilibrium of this economy:

Definition 1.1 (demand correspondence). Given a valuation function v : 2[n] →
R and a vector of prices p ∈ Rn, we define the demand correspondence as the family
of sets that maximize the utility of an agent under a price vector p :

D(v, p) := {S ⊆ [n]; vp(S) ≥ vp(T),∀T ⊆ [n]}

∗Google Research NYC, (renatoppl@google.com). Part of this work was done while the author
was a post-doc at Microsoft Research Silicon Valley.

1Note that we don’t require monotonicity in the definition. When we refer to a valuation for
which v(S) ≤ v(T) whenever S ⊆ T , we will refer to it as a monotone valuations or valuations
satisfying free-disposal.

1

Definition 1.2 (Walrasian equilibrium). Given an economy with indivisible
goods with n goods, m agents and valuations {vi}i satisfying free-disposal2, a Wal-
rasian equilibrium corresponds to a vector of prices p ∈ Rn+ and a partition of the
goods in disjoint sets [n] = ∪mi=1Si such that Si ∈ D(vi, p) for all i.

A reader familiar with the duality theorem in linear programming will readily
recognize that the definition of Walrasian equilibrium closely resembles the com-
plementarity conditions where the prices play the role of dual variables. Indeed,
this is formalized by the results known as the First and Second Welfare Theorem.
The First Welfare Theorem states that if (p, S1, . . . , Sm) is a Walrasian equilib-
rium then this partition corresponds to the optimal allocation of goods, i.e., the
allocation maximizing

∑
i v
i(Si). The proof is quite elementary: let S∗1 , . . . , S

∗
m be

any partition maximizing the welfare. Then since Si ∈ D(vi, p), it must be the
case that: vi(Si) − p(Si) ≥ vi(S∗i) − p(S∗i). Summing for all i and observing that∑
i p(Si) = p([n]) =

∑
i p(S

∗
i), we conclude that

∑
i v
i(Si) ≥

∑
i v
i(S∗i).

The analogy with linear programming is completed by what is called the Second
Welfare Theorem. It states that if (p, S1, . . . , Sm) is a Walrasian equilibrium and
S∗1 , . . . , S

∗
m maximizes

∑
i v
i(S∗i), then (p, S∗1 , . . . , S

∗
m) is also a Walrasian equilib-

rium. The proof is also simple, observe that summing vi(Si)−p(Si) ≥ vi(S∗i)−p(S∗i)
for all i we obtain

∑
i v
i(Si) ≥

∑
i v
i(S∗i). But since this is an equality, we should

have an equality for each agent i: vi(Si)−p(Si) = vi(S∗i)−p(S∗i), hence S∗i ∈ D(vi, p).

A natural question is for which economies there exist Walrasian equilibria. Kelso
and Crawford define a very natural price adjustment procedure and define gross sub-
stitutes as the natural sufficient condition for such process to converge. The general
idea behind this procedure goes back to Walras’ tatônnement procedure [45], where
tatônnement means trial-and-error. The idea is that we start with an arbitrary price
vector and compute one set in the demand of each agent. Then, for each item that is
demanded by more then one agent (over-demanded) we increase the price. For each
item that is demanded by no agent (under-demanded), we decrease the price. We
iterate this until no item is over-demanded or under-demanded.

Let’s describe this procedure precisely. We will make some modifications to the
idea above to make the procedure simpler to analyze. Instead of starting from an
arbitrary price vector p, we will start with zero prices for all items and only allow
prices to increase. Moreover, we will start with all the items allocated to the first
player at zero price and we will take turns asking buyers to choose their favorite set
of items given prices as follows: the current price pj for items currently allocated to
him and pj + δ for items allocated to other players. Once he takes items from other
players, the prices of such items increase by δ.

Notice that the procedure has to stop at some point, since prices cannot increase
indefinitely. If the price of an item is higher then maxi,S v

i(S), for example, no agent
will demand this item and the price will freeze. Let p be the final price and pi be
the price faces by each agent. It should be the case that Si ∈ D(vi, pi), which means
that for all T ⊆ [n], vi(Si) − pi(Si) ≥ vi(T) − pi(T). This can be re-written as:
vi(Si)− p(Si) ≥ vi(T)− p(T)− δ|T \ Si|.

2The definition of Walrasian equilibrium can be changed to incorporate valuations not satisfying
free-disposal. We do so by partitioning the items in m+ 1 disjoint sets S0, S1, . . . , Sm. The items in
S0 are not allocated and are required to be priced at zero at in equilibrium.

2

ALGORITHM 1: Walrasian tatônnement procedure

Input: δ > 0, n,m ∈ Z+ and vi for i ∈ [m]
Set zero prices for all items: pj = 0, ∀j ∈ [n]
Set initial allocation S1 = [n], Si = ∅, ∀i ∈ [m] \ {1}
Implicitly define pi ∈ Rn as a function of p s.t. pij = pj if j ∈ Si and pij = pj + δ o.w.
while there exists i such that Si /∈ D(vi, pi)

find a demanded set under the pi price vector Xi ∈ D(vi, pi)
update prices: for j ∈ Xi \ Si, set pj = pj + δ (vectors pi are implicitly updated)
update allocations: Si = Xi and Sj = Sj \Xi for j 6= i

In the limit as δ → 0, we recover a price vector and allocation such that vi(Si)−
p(Si) ≥ vi(T) − p(T). To make the previous statement precise, let (pt, St1, . . . , S

t
m)

be the outcome of the Walrasian tatonnement procedure for δt = 1
t for t ∈ Z+. Since

there are finitely many allocations (St1, . . . , S
t
m), there is one allocation that happens

infinitely often. Let S1, . . . , Sm be such allocation and let t1 < t2 < . . . be the
infinite subsequence corresponding to this allocation. Since pt is bounded, passing to
a subsequence if necessary, we can assume that pt → p. So taking t → ∞ for this
subsequence, we get vi(Si)− p(Si) ≥ vi(T)− p(T) for all i and T ⊆ [n].

The argument above gives us an existential proof of a price vector p and an allo-
cation Si such that each agent is getting his optimal bundle under the current prices.
This is not yet a Walrasian equilibrium, since Definition 1.2 requires the allocation
to be a partition of the set of items, i.e., ∪iSi = [n]. The definition of gross substi-
tutability is exactly what is needed to ensure that we can run the procedure above in
such a way that all the items are allocated in the end. Since we started the Walrasian
tatônnement procedure with a partition of the items, if we can always find a demanded
set Xi ∈ D(vi, pi) containing his currently allocated items, i.e., Si ⊆ Xi, then we can
guarantee the invariant that no item is even un-allocated during the execution of the
algorithm. This motivates the following definition:

Definition 1.3 (gross substitutes, Kelso and Crawford [23]). A valuation func-
tion satisfies the gross substitutes property if for any price vectors p ∈ Rn and
S ∈ D(v, p), if p′ is a price vector with p ≤ p′, then there is a set S′ ∈ D(v, p′)
such that S ∩ {j; pj = p′j} ⊆ S′.

In other words: if an agent with a gross substitute valuation demands a set S of
items under a price vector p and the price of some items subsequently increase, the
agent still has a demanded set that contains the items in S whose price didn’t increase.

Theorem 1.4 (Kelso and Crawford [23]). If valuations v1, . . . , vm satisfy the
gross substitutes property, then a Walrasian equilibrium always exists.

In some sense, gross substitutability is also necessary for the existence of Wal-
rasian equilibria. Gul and Stacchetti [19] show the following: let C be a class of
valuation functions that contains all unit demand valuations, i.e., all valuations of the
type v(S) = maxj∈S v({j}). Then if C is such that for all v1, . . . , vm ∈ C there is a
Walrasian equilibrium, then all valuations in C are gross substitutes.

2. Examples, Non-Examples and Submodularity. It is instructive to have
in mind a couple of examples and non-examples of gross substitute functions, to guide

3

our intuition in the following sections. Three simple classes of valuations that can be
readily recognized as gross substitutes from Definition 1.3 are:

1. additive valuations, i.e., valuations for which v(S) =
∑
i∈S v({i})

2. unit-demand valuations, i.e., valuations for which v(S) = maxi∈S v({i})
3. symmetric concave valuations, i.e., valuations of the form v(S) = f(|S|) for

some monotone concave function f : R+ → R+.

A less obvious example is the class of valuations known as assignment valuations
introduced by Shapley [42], also called OXS valuations by Lehmann, Lehmann and
Nisan [29]. An assignment valuation with n items can be represented as an n × k
matrix V with non-negative entries, where each row corresponds to an item and each
column to a position. Entry Vi,j corresponds to the value of item i in position j.
Each item can be assigned to a single position and each position can be assigned only
one item. The value of a subset S of items is the value of the optimal assignment
of items in S to positions. Items and positions are allowed to be left unassigned.
Mathematically:

v(S) = max{
∑
i,j Vij · xij s.t.

∑
k xkj ≤ 1,

∑
k xik ≤ 1 and xij ∈ {0, 1},∀i, j}

We postpone until Section 8 a proof that all assignment valuations are gross substi-
tutes, but we remark that unit-demand functions are the special case where there is
only one position, additive functions correspond to the case where the matrix is an
n× n diagonal matrix and the symmetric concave valuations to the case in which all
the rows of the matrix are equal.

Hatfield and Milgrom [1] define a generalization of assignment valuations, which
they call endowed assignment valuations. The show that this class also satisfied the
gross substitutes property and that it captures most practical applications of gross
substitutes valuations in matching markets. A valuation v on n items is said to be an
endowed assignment valuation if there is an assignment valuation w on a larger set of
items such that v(S) = w(S|T).

Another important example of gross substitutes is the class of matroid rank func-
tions. This survey won’t formally require any knowledge of matroid theory, basic
familiarity with matroids will be useful to guide the reader’s intuition later on. The
topic is too extensive to survey here, but we point to Lawler [28], Oxley [38] or Schri-
jver [41] for a comprehensive discussion.

We remark that even though matroid rank functions are gross substitute val-
uations, sums of matroid rank functions might not be. For example, given three
items {a, b, c} define for each i ∈ {a, b, c}, the function ri : 2{a,b,c} → R such that:
ri(∅) = 0, ri(S) = 1 for |S| = 1, ri({a, b, c} \ i) = 1, and ri(S) = 2 for all remaining
subsets S. Notice that for each i, ri is a matroid rank function and hence satisfy
the gross substitutability. However, the valuation v = ra + 2 · rb + 3 · rc does not
satisfy gross substitutability. In order to see that, observe that for the price vector
p = [4, 5, 4], D(v; p) = {{a}, {c}, {a, c}, {b, c}}. If the price of item c increases to ∞,
i.e., p′ = [4, 5,∞], then demand set becomes D(v; p′) = {{a}}. So the increase in price
of item c makes item b no longer belong to any demanded set, violating Definition 1.3.

Gul and Stachetti [19] observe that gross substitutes are a subclass of submodular
functions:

4

Definition 2.1 (submodularity). A valuation function is said to be submodular
if for all subsets S, T ⊆ [n], v(S ∩ T) + v(S ∪ T) ≤ v(S) + v(T). Equivalently, for
every S ⊆ [n] and i, j /∈ S, v(i, j|S) ≤ v(i|S) + v(j|S).

Theorem 2.2 (Gul and Stacchetti [19]). Every gross substitute valuation func-
tion is submodular.

Proof. Let v be a gross substitute valuation functions. Given S ⊆ [n] and i, j /∈ S,
consider the price vector3 such that pt =∞ for t /∈ S∪{i, j}, pt = −∞ for t ∈ S∪{j}
and pi = v(i|S ∪ {j}). Clearly S ∪ {i, j} ∈ D(v, p). Now, if one defines p′ such that
p′j = ∞ and p′t = pt for all other t, then by gross substitutability, S ∪ {i} must be a
demanded set. Therefore: v(i|S) ≥ v(i|S ∪ {j}).

Since the example v = ra+2 ·rb+3 ·rc earlier in this section is the sum of matroid
rank functions, and hence submodular, it is clear that gross substitutes is a strict
subclass of submodular functions. Another good source of examples of submodular
but not gross substitute functions comes from the class of budget additive functions.
We say that a valuation function is budget additive if it is of the form: v(S) =
min{B,

∑
i∈S wi} for non-negative real numbers B,w1, . . . , wn. The following example

due to Lehmann, Lehmann and Nisan [29] shows function that is budget additive but
not gross substitutes: consider three items {a, b, c} with weights wa = wb = 1 and
wc = 2 and budget B = 2. In order to see that the associated budget additive function
is not gross substitutes, notice that for the prices p = [12 ,

1
2 , 1], D(v, p) = {{a, b}, {c}},

but if the price of a increases and the price vector becomes p′ = [1, 12 , 1], then the
demand correspondence becomes D(v, p′) = {{c}}, i.e., the increase in the price of a
makes item b be no longer demanded.

3. Gross substitutes, greedy demand oracles and local search. An im-
portant property of gross substitute valuations is that it is the exact class of functions
for which demand oracles can be computed via a greedy or local search algorithms. In
this section we make this statement precise by defining matroidal maps and discrete
concave valuations. The first part of the survey will be devoted to show that those
three concepts are equivalent.

An algorithmic primitive needed to implement the Walrasian tatônnement pro-
cedure is the computation of a set in the demand correspondence X ∈ D(v, p). This
is usually referred as the demand oracle problem. A simple heuristic to compute de-
mand oracles is the greedy algorithm: start with the empty set X and keep adding
the element j /∈ X that gives the maximum improvement to vp(X). In other words:

Definition 3.1 (matroidal map). A valuation function is a matroidal map if
for all price vectors p ∈ Rn, the greedy algorithm implements a demand oracle, i.e.,
G(v, p) ∈ D(v, p), where G(v, p) is the output of Algorithm 2.

Theorem 3.2. A valuation function satisfies the gross substitute property if and
only if it is a matroidal map.

Before we proceed with the task of proving the previous theorem, we also mention

3allowing prices to take values∞ and −∞ simplifies the arguments. To be more precise, one can
view such prices as M or −M for M = 1 + maxS v(S).

5

ALGORITHM 2: Greedy demand oracle

Input: p ∈ Rn
+, v : 2[n] → R+

Initialize X = ∅
repeat

find j∗ ∈ [n] \X maximizing ∆j = v(j|X)− pj
if ∆j∗ > 0, X = X ∪ {j∗}
if X = [n] or ∆j∗ ≤ 0, return X

another algorithmic definition of gross substitutability based on local search. Consider
the following heuristic to compute demand oracles: start at an arbitrary set X and
try to find a set improving vp in the neighborhood N of X, where the neighborhood
is composed by all sets that can be obtained from X by adding one element, removing
one element or exchanging an element in the set by one element outside the set.

ALGORITHM 3: Local search demand oracle

Input: p ∈ Rn
+, v : 2[n] → R+, X0 ⊆ [n]

Initialize X = X0

repeat
Let N = {X ∪ {i}; i /∈ X} ∪ {X \ {i}; i ∈ X} ∪ {X ∪ {i} \ {i′}; i /∈ X, i′ ∈ X}
If maxY ∈N vp(Y) ≤ vp(X), return X
Else choose some Y ∈ N with vp(Y) > vp(X) and let X = Y .

Gul and Stacchetti [19] show that yet another way of defining gross substitutes
is as the class of valuation functions for which local search is exact, i.e., it doesn’t get
stuck on local minima:

Definition 3.3 (discrete concave valuation). A valuation function is discrete
concave if for all price vectors p ∈ Rn, the local search algorithm implements a demand
oracle, i.e., L(v, p,X0) ∈ D(v, p), where L(v, p,X0) is the output of Algorithm 3.

Equivalently, a valuation function is discrete concave if and only if for all price
vectors p ∈ Rn, S ∈ D(v, p) iff vp(S) ≥ vp(S ∪ i), vp(S) ≥ vp(S \ j) and vp(S) ≥
vp(S ∪ i \ j), for all i /∈ S and j ∈ S.

Theorem 3.4 (Gul and Stacchetti [19]). A valuation function satisfies the gross
substitute property if and only if it is discrete concave.

4. A price independent local characterization. We make a brief detour and
look at a different, yet very related question about gross substitutes. In the previous
section we gave two alternative algorithmic characterizations of gross substitutes. All
characterizations given so far involve prices, i.e., they are of the form: a valuation v
satisfied the gross substitutes property if for all price vectors p, the pair (v, p) has some
given property. The question of giving an explicit characterization of gross substitutes
was resolved simultaneously by Fujishige and Yang [16] and Reijnierse, Gellekom and
Potters [39]. The first paper provides a powerful connection to the theory of Discrete
Convex Analysis, which we discuss in more detail in Section 7. We focus first on the
definition given by Reijnierse et al [39].

6

Theorem 4.1 (Reijnierse, Gellekom and Potters [39]). A valuation function has
the gross substitutes property iff it is submodular and for all sets S ⊆ [n] and all
distinct i, j, k /∈ S, the following holds:

v(i, j|S) + v(k|S) ≤ max [v(i|S) + v(j, k|S), v(j|S) + v(i, k|S)] (RGP)

Proof sketch. The high level picture of their proof is quite simple and illuminating.
Here we provide a brief sketch of it. First, they show that a function doesn’t have
the gross substitutes property iff it is possible to find the following certificate: a price
vector p ∈ Rn such that

either (i) D(v, p) = {S, S ∪ {i, j}} or (ii) D(v, p) = {S ∪ {k}, S ∪ {i, j}}.

Notice that the existence of such certificate clearly shows the violation of gross sub-
stitutability: the increase in the price of j would make the demand set become {S}
in case (i) and {S ∪ {k}} in case (ii). Therefore, item i would no longer be in the
demand set. Proving the other direction requires more work, but its essence is to
search for a minimal violation of gross substitutability by starting with an arbitrary
one and changing the price vector so to shrink the demand set until it is minimal.

The second step is to transform the existence of certificates as above in simple
conditions on v. This is based on two observations: There exists a certificate of type
(i) iff the v is not submodular. There exists a certificate of type (ii) iff there is a
violation of condition (RGP).

First, assume that we have a certificate of type (i). So, there are prices such that
0 = v(i, j|S)− pi − pj > max[v(i|S)− pi, v(j|S)− pj]. Summing the inequalities 0 >
v(i|S)−pi and v(i, j|S)−pi−pj > v(j|S)−pj we get: v(i, j|S) > v(i|S)−v(j|S) which
is a violation of submodularity. Conversely, if you have a violation of submodularity
for i, j, S, take pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j} and pi = v(i|S) + ε and
pj = v(j|S) + ε for some tiny ε and this gives us a certificate of type (i).

Assume now that we have a certificate of type (ii). So, there are prices such
that v(k|S) − pk = v(i, j|S) − pi − pj > max[v(i|S) − pi, v(j|S) − pj , v(i, k|S) − pi −
pk, v(j, k|S)− pj − pk]. Summing the inequalities such that the prices cancel, we get:
v(i, j|S) + v(k|S) > max[v(i|S) + v(j, k|S), v(j|S) + v(i, k|S)]. Conversely, if you have
a violation of the condition (RGP) for i, j, k, S, let φ > 0 be the value of the violation,
i.e., φ = v(i, j|S) + v(k|S)−max{v(i|S) + v(j, k|S), v(j|S) + v(i, k|S)}. Now, consider
prices pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j, k} and pi = v(i|S ∪ {j}) − 1

2φ,
pj = v(j|S ∪{i})− 1

2φ and pk = v(k|S) + v(i, j|S)− v(i|S)− v(j|S)−φ. It is straight-
forward to check that such prices give us a certificate of type (ii).

Now we explain what we mean by a local characterization. Given a valuation
function v and two sets S,R ⊆ [n] we can define a restriction vR|S : 2R → R by
vR|S(T) = v(T |S). We say that this is a k-restriction if |R| = k. Observe that usual
properties as monotonicity and submodularity are properties of the restrictions, i.e.,
a function is monotone iff each 1-restriction is monotone. A function is submodular
iff each 2-restriction is submodular. A corollary of Theorem 4.1 is that:

Corollary 4.2. A valuation function satisfies the gross substitutes property iff
every 3-restriction satisfied the gross substitutes property.

7

An equivalent characterization of the one in Theorem 4.1 was also observed in
Lehmann, Lehmann and Nisan [29] and Bing, Lehmann and Milgrom [7]. The latter
characterization defines for each valuation v and subset S ⊆ [n] a measure of how two
goods i and j are substitutes to each other. Given i, j /∈ S, let:

αS(i, j) = v(i|S) + v(j|S)− v(i, j|S)

and observe that (RGP) is equivalent to αS(i, j) ≥ min[αS(i, k), αS(k, j)]. This in
particular says that dS(i, j) = αS(i, j)−1 is a metric satisfying the following stronger
version of the triangle inequality: dS(i, j) ≤ max[dS(i, k), dS(k, j)]. Such metrics are
called ultra-metrics and have the interesting properties that all triangles are isosceles.
This translates back to αS as saying that given {i, j, k}, then up to renaming we have:

αS(i, k) = αS(k, j) ≤ αS(i, j) (Iso)

We observe one interesting non-trivial and useful consequence of the isosceles tri-
angle property, which will be useful later:

Lemma 4.3. Given a gross substitute valuation v : 2[n] → R, S ⊆ [n] and
i1, i2, j1, j2 /∈ S, then:

v(i1, i2|S) + v(j1, j2|S) ≤ max[v(i1, j2|S) + v(j1, i2|S), v(i1, j1|S) + v(i2, j2|S)]

Proof. Let P = {i1, i2, j1, j2} and M = min{t1,t2}∈P αS(t1, t2). Define the length
of the edge between (t1, t2) as αS(t1, t2). By property (Iso), every triangle is isosceles
with the smaller edge appearing at least twice. So, if we look the graph of the edges
of minimal length between P , then either one of two things happen: (i) there is a
cycle, i.e., there are αS(x1, x2) = αS(x2, x3) = αS(x3, x4) = αS(x4, x1) = M where
{x1, x2, x3, x4} = {i1, i2, j1, j2} or (ii) there is a star, i.e., αS(x1, x2) = αS(x2, x3) =
αS(x2, x4) = M . In order to see that, let x1, x2 be nodes in P such that αS(x1, x2) =
M . Let x3 be some other node, so the triangle x1, x2, x3 must have two sides of length
M . Up to renaming, αS(x1, x2) = αS(x2, x3) = M . If αS(x2, x4) = M we are in case
(ii). If αS(x2, x4) > M then by property (Iso) applied on the triangles x1, x2, x4 and
x2, x3, x4, we must have αS(x1, x4) = αS(x3, x4) = M , in which case we are in case
(i).

Now, proving the statement of the lemma in each of the two cases is simple: if
we are in case (i), then we can assume (swapping the names of i1, i2 if necessary)
that αS(i1, j1) = αS(i2, j2) = M , so: αS(i1, j1) + αS(i2, j2) = 2M ≤ αS(i1, i2) +
αS(j1, j2), which is equivalent to the statement in the lemma. In case (ii), say i1 is
the center of the star, i.e., αS(i1, x) = M for all x ∈ {i2, j1, j2}. Now: αS(j1, j2) ≥
min[αS(i2, j1), αS(i2, j2)]. Swapping the names of j1 and j2 if necessary, we can
assume that: αS(j1, j2) ≥ αS(i2, j1). That together with αS(i1, i2) = M = αS(i1, j2),
we get again αS(i1, j1) +αS(i2, j2) ≤ αS(i1, i2) +αS(j1, j2) which is equivalent to the
statement in the lemma.

5. Well Layered and Matroidal Maps. The final step towards proving the
equivalence of definitions 3.1 and 1.3 is the concept of well layered maps introduced
by Dress and Terhalle [11] – in which the authors characterize the set functions
v : 2[n] → R for which greedy algorithms are optimal.

8

Definition 5.1 (well-layered map). A function v : 2[n] → R is called well-
layered iff for each p ∈ Rn the sets S0, S1, S2, . . . obtained by the greedy algorithm
(i.e., S0 = ∅ and Si = Si−1 ∪ {xi} where xi ∈ argmaxx∈[n]\Si−1

vp(x|Si−1)) are such
that vp(Si) = max{vp(S); |S| = i}.

Theorem 5.2 (Dress and Terhalle [11]). A map v : 2[n] → R is well-layered iff
for any triple of disjoint sets S, {i}, T with |T | ≥ 2,

v(i|S) + v(T |S) ≤ max
j∈T

v(j|S) + v(T ∪ i \ j|S) (WL)

Before we proceed to the proof of Theorem 5.2 it is useful to notice its relation
with the condition of Reijnierse et al:

Lemma 5.3. Conditions (RGP) and (WL) are equivalent.
Proof. One readily recognizes condition (RGP) to be a special case of (WL) with

|T | = 2. For the other direction, we show by induction on |T | that (RGP) implies
(WL). For |T | = 2, this is trivial. Now, suppose we proved it for |T | = t − 1. Given
S, {i}, T with |T | = t, choose k ∈ T minimizing αS(i, k). Then by the induction
hypothesis applied to S ∪ k, {i}, T \ k, we have that there is j ∈ T \ k such that:

v(i|S ∪ k) + v(T \ k|S ∪ k) ≤ v(j|S ∪ k) + v(T ∪ i \ j, k|S ∪ k)

which can be re-written as:

v(i, k|S) + v(T |S) ≤ v(j, k|S) + v(T ∪ i \ j|S)

now notice that by the choice of k, it must be the case that for all j, αS(i, k) ≤ αS(k, j),
since the smaller αS-value in the triangle i, j, k appears twice and αS(i, k) ≤ αS(i, j).
Now, this means that v(i|S)− v(i, k|S) ≤ v(k|S)− v(j, k|S). Summing with the pre-
vious inequality gives us condition (WL) for |T | = t.

Proof of Theorem 5.2. First, assume that the condition (WL) holds and let’s
prove that St ∈ argmaxS;|S|=tvp(S) by induction on t. The case t = 1 is trivial.
Assume we proved for t− 1 and assume there is S′ with |S′| = t and vp(S

′) > vp(St).
Choose such set maximizing k such that {x1, . . . , xk} ⊆ S′. Since |S′| = |St| = t,
clearly k < t. Now, applying (WL) for {x1, . . . , xk}, xk+1, T

′ = S′ \ {x1, . . . , xk} we
get that there is j ∈ T ′ such that:

v(xk+1|x1, . . . , xk) + v(T ′|x1, . . . , xk) ≤ v(j|x1, . . . , xk) + v(T ′ ∪ xk+1 \ j|x1, . . . , xk)

and since v(xk+1|x1, . . . , xk) ≥ v(j|x1, . . . , xk) by the greedy rule, we have that
v(S′) ≤ v(S′ ∪ xk+1 \ j) contradicting the minimality of k.

For the other direction, assume that (WL) is violated. Since (WL) is equivalent
to (RGP), (WL) must be violated by some |T | = {j, k}. So assume S, i, {j, k} for
which (WL) is not valid. Now, define prices such that pt = −∞ for t ∈ S, pt =∞ for
t /∈ S ∪ {i, j, k}, pi = v(i|S)− ε, pj = v(j|S) and pk = v(k|S). The greedy algorithm
will first pick all the elements in S, then i. Now, observe that for t = |S| + 2 the
optimal set is either S∪{i, j}, or S∪{j, k} or S∪{i, k}. The fact that (WL) is violated
implies that v(i|S) + v(j, k|S) > v(j|S) + v(i, k|S). Substituting v(i|S) and v(j|S) by

9

the prices, we get that (for sufficiently small ε) v(j, k|S)−pj−pk > v(i, k|S)−pi−pk,
i.e., S ∪ {j, k} is strictly preferable then S ∪ {i, k}. The exact same argument works
swapping j and k, so the only set of size |S|+2 maximizing vp is S∪{j, k}. Therefore
v can’t be a well-layered map, since the greedy algorithm picked i in step |S|+1. This
finishes the proof of Theorem 5.2.

The concept of well layered maps guarantees that the greedy algorithm will find
the optimal set of each cardinality. In order to guarantee that the greedy algorithm
as described in Section 3 will find the optimal, we need to guarantee that once a layer
doesn’t improve over the previous, we can stop. Dress and Terhalle [10] observe that
in order for this to happen, it is necessary and sufficient that the valuation is both
well-layered and submodular. They call such functions matroidal maps.

Theorem 5.4 (Dress and Terhalle [10]). A valuation function satisfied Defini-
tion 3.1 iff it is well-layered and submodular.

Proof. Submodularity guarantees that the sets St will be such that vp(St+1) −
vp(St) ≤ vp(St ∪xt+1 \xt)− vp(St−1) ≤ vp(St)− vp(St−1). So: vp(St) ≥ 1

2 [vp(St−1) +
vp(St+1)]. This guarantees that t 7→ vp(St) is concave. For the converse, if a function
is not submodular, then there exist i, j, S such that v(i, j|S) > v(i|S) + v(j|S). So
one can set prices pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j}, pi = v(i|S) + ε and
pj = v(j|S) + ε for some small ε. For such prices the greedy algorithm will terminate
on S, while the optimum is S ∪ {i, j}.

Theorem 5.4 establishes our main claim that Definitions 3.1 and 1.3 are equiva-
lent. In particular, for any gross substitute valuation function, a set S ∈ D(v; p) can
be found using the greedy algorithm (Algorithm 2). The following remark states that
the greedy algorithms finds not only one, but all demanded sets. This fact is somehow
implicit in the proof of Theorem 5.4 but we state and prove it again for completeness:

Remark 5.5. Given a gross substitute valuation function v, a price vector p
and a demanded set S ∈ D(v; p), then there is a tie breaking rule4 for the greedy
algorithm that produces the set S. Formally, if x1, x2, . . . , xk is an ordering of ele-
ments in S such that xi ∈ argmaxy∈S\{x1,...,xi−1}v(y|x1, . . . , xi−1), then xi is also in
argmaxy∈[n]\{x1,...,xi−1}v(y|x1, . . . , xi−1).

Proof. This fact follows directly from the (WL) condition. Assume that there
is i such that for some vp(y|x1, . . . , xi−1) > vp(xi|x1, . . . , xi−1). Since x1, . . . , xk
are in greedy order, it must be that y /∈ S. By applying (WL) with sets Xi−1 =
{x1, . . . , xi−1}, {y}, {xi, . . . , xk}, we get that there is xt for t ≥ i such that:

vp(y|Xi−1) + vp(xi, . . . , xk|Xi−1) ≤ vp(xt|Xi−1) + vp({y, xi, . . . , xk} \ xt|Xi−1)

Since vp(y|Xi−1) > vp(xi|Xi−1), we get vp(S) < vp(S ∪ y \xt), which contradicts that
S ∈ D(v; p).

We would like to finish by pointing out that many combinatorial structures such
as matroids, polymatroids, valuated matroids [12], among others, can be defined as

4formally a tie breaking rule is a function b that associates for each pair of disjoint sets S, T an
element from T . The greedy algorithm with tie-breaking rule b, whenever choosing an element in
T = argmaxi/∈Sv(i|S), it adds b(S, T) ∈ T .

10

the class of objects for which a certain problem admits a greedy solution. For a more
extensive exposition on such combinatorial structures we refer to the classical text
of Korte, Lovász and Schrader on greedoids [26]. Similar arguments can be used to
argue about local search:

Theorem 5.6. A valuation function satisfied Definition 3.3 iff it is well-layered
and submodular.

Proof. First we argue that if a valuation v is well-layered and submodular,
then local search can’t get stuck in a local maximum for any price p. Let S∗ ∈
argmaxS⊆[n]vp(S) and S ⊆ [n] be such that vp(S) < vp(S

∗). Then we want to argue
that there is S′ ∈ N where N is the neighborhood of S as in the local search proce-
dure in Section 3. First observe that if v is well-layered and submodular, then vp has
also those two properties.

We consider three cases:

Case (i) S ⊆ S∗. Notice that 0 < vp(S
∗ \ S|S) ≤

∑
i∈S∗\S vp(i|S), where the last

inequality follows from submodularity. Therefore, there is some i for which vp(i|S) >
0, then we can take S′ = S ∪ {i}.

Case (ii) S∗ ⊆ S. Let S \ S∗ = {i1, . . . , ik} For this case, 0 > vp(S \ S∗|S∗) =∑k
j=1 vp(ij |S ∪ {i1, . . . , ij−1}) ≥

∑k
j=1 vp(ij |S \ ij). So there must be i ∈ S \ S∗ such

that vp(i|S \ i) < 0, then we can take S′ = S \ i.
Case (iii) if neither S ⊆ S∗ nor S∗ ⊆ S, let i be the element in (S \S∗)∪ (S∗ \S)

maximizing vp(i|S ∩ S∗). Now, we consider two possibilities: (iii-a) If i ∈ S∗, we use
condition (WL) with S ∩ S∗, i, S \ S∗. This gives us j ∈ S \ S∗ such that:

vp(i|S ∩ S∗) + vp(S \ S∗|S ∩ S∗) ≤ vp(j|S ∩ S∗) + vp((S \ S∗) ∪ i \ j|S ∩ S∗)

By the choice of i, we know that vp(j|S ∩ S∗) ≤ vp(i|S ∩ S∗). If this inequality
holds strictly, then, vp(S \ S∗|S ∩ S∗) < vp((S \ S∗) ∪ i \ j|S ∩ S∗) and therefore
vp(S) ≤ vp(S ∪ i \ j). If on the other hand vp(j|S ∩ S∗) = vp(i|S ∩ S∗) then we
can swap i and j and consider the sub-case where i ∈ S. (iii-b) If i ∈ S, we use
condition (WL) with S ∩ S∗, i, S∗ \ S. Doing as above, we find j ∈ S∗ \ S such that
vp(S

∗) ≤ vp(S
∗ ∪ i \ j), which holds with equality since S∗ is optimal. This way

we obtain an optimal set closer to S. Then we can repeat the above procedure with
S∗ ∪ i \ j instead of S∗ a finite number of times until we reach some set S′ ∈ N or we
reach one of the previous cases.

For the converse direction, we want to show that if a valuation is not well-layered
or not submodular, local search can get stuck in suboptimal local minima. For this,
we can use the same examples used to show that in such case the greedy algorithm
can be suboptimal.

We end this section with Figure 5.1 summarizing the equivalences proved so far.
The dashed arrow corresponds to a claim proved in [39] but not fully proved in this
survey. To make the survey self-contained, we give a direct proof that the concept
of matroidal maps (Definition 3.1) implies the original definition of gross substitutes
due to Kelso and Crawford (Definition 1.3):

Theorem 5.7. Every matroidal map satisfied the gross substitutes condition.

11

Gross Substitutes
Defn 1.3

(RGP)+(submodular)

Thm 4.1

(sketch)

(WL)+(submodular)

Theorem 5.3

Discrete Concave
Defn 3.3

Theorem 3.4

Matroidal
Defn 3.1

Theorem 3.2

Theorem 5.7

Fig. 5.1. Summary of equivalences proved so far

Proof. Consider a matroidal map v, a price vector p and a set S ∈ D(v; p). In
order to show that the conditions in Definition 1.3 hold, we only need to show for
a price vector p′ such that p′i > pi for some i and p′j = pj for all j 6= i, since we
can increase prices one at a time. Let S′ be a set in argmaxS′∈[n]\ivp(S

′). Clearly, if
p′i ≤ pi + vp(S)− vp(S′), then S ∈ D(v; p′) and we are done. Now, consider the case
where p′i > pi+vp(S)−vp(S′). For this, first define p̃ such that p̃i = pi+vp(S)−vp(S′)
and p̃j = pj for all j 6= i. Clearly S ∈ D(v; p̃). By Remark 5.5, there is a tie breaking
rule for which the greedy algorithm picks S. Since vp̃(i|S \ i) = 0, we can assume
that i is the last element picked under this tie breaking rule. One can use the same
tie breaking rule to pick under price vector p′. It is straightforward to see that the
greedy algorithm behaves the same way as in p̃ until i. Therefore it will choose a set
containing S \ i.

6. Duality theorem for gross substitutes. The duality between gross sub-
stitutes and submodular functions was observed in many places, as in Fujishige and
Yang [16] and Murota [31], Gul and Stacchetti [20] and Ausubel and Milgrom [2].
Given a valuation function v, they consider the utility function u : Rn → R which
maps a set of prices p ∈ Rn to the optimal utility that can be obtained under
such prices u(p) = maxS vp(S). They relate it to the concept of Rn-valued sub-
modular function, which are functions f : Rn → R such that for any x, y ∈ Rn,
f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), where ∨ and ∧ are the component-wise maximum
and minimum respectively. Analogously to submodular set functions, this is equiva-
lent to f(x+ δi · ei + δj · ej)− f(x+ δi · ei) ≤ f(x+ δj · ej)− f(x) for any δi, δj > 0
and i 6= j, where ei is the i-th coordinate vector.

Theorem 6.1 (duality, Ausubel and Milgrom [2]). A valuation function v :
2[n] → R has the gross substitutes property iff its associate utility u(p) = maxS vp(S)
is an Rn-valued submodular function.

12

Proof. Since u is continuous, it is enough to prove for almost all p, δi, δj and then
we can extend to all by continuity. Define Γ = ∪S,T⊆[n]{p ∈ Rn; vp(S) = vp(T)}. Then
Γ is a measure zero subset of Rn, since it is a finite collection of hyperplanes. For p /∈ Γ,
|D(v, p)| = 1. For p /∈ Γ, denote by D(v, p) the unique set demanded at those prices.
Given such p, there is ball around p such that for all price vectors, the demand set is
the same, so u(p) = v(D(v, p))−p(D(v, p)) and therefore, d

dpj
u(p) = −1{j ∈ D(v, p)}.

Now, notice that given p, δi, δj :

[u(p+ δi · ei + δj · ej)− u(p+ δi · ei)]− [u(p+ δj · ej)− u(p)] =∫ δj

0

d

dpj
u(p+ δi · ei + z · ej)− d

dpj
u(p+ z · ej)dz =∫ δj

0

−1{j ∈ D(v, p+ δi · ei + z · ej)}+ 1{j ∈ D(v, p+ z · ej)}dz ≤ 0

since the increase in pi can’t remove j from the demand set by gross substitutability.
The converse can be proved by the same argument backwards.

A different view of the same duality can be obtained by the characterization of
demand sets as basis of a matroid:

Theorem 6.2 (duality, Gul and Stacchetti [20]). A valuation function v : 2[n] →
R has the gross substitutes property then for any price p ∈ Rn, the set

D∗(v, p) = {S ∈ D(v, p); |S| ≤ |T |,∀T ∈ D(v, p)}

of the demanded sets of minimum size, form the set of basis of a matroid.

One characterization of basis-set B ⊂ 2[n] of matroids is via the exchange property:
for any S, T ∈ B and s ∈ S \ T , there is t ∈ T \ S such that S ∪ t \ s ∈ B. We notice
that we proved exactly this fact in case (iii) of the proof of Theorem 5.6.

7. Connection to Discrete Convex Analysis and Valuated Matroids.
Fujishige and Yang [16] showed a powerful connection between gross substitute valua-
tions and the concept of M \-concave functions in Discrete Convex Analysis. Discrete
Convex Analysis is a theory developed by Murota [31] that defines a very general
class of functions f : Zn → R on the integral lattice for which it is possible to prove
strong duality theorems. Such theorems enable the design of efficient greedy and
flow-like algorithmic solutions for various discrete optimization problems involving
such functions.

Murota and Shioura [35] define M \-concave functions based on the concept of
M -concavity of Murota [31]. They originally define M \-concave functions on the in-
tegral lattice Zn, but for the purposes of this survey, we will consider their restriction
to {0, 1}n:

Definition 7.1 (M \-concave functions, Murota and Shioura [35]). A function
v : 2[n] → R is M \-concave if for all S, T ⊆ [n] and s ∈ S \ T ,

v(S) + v(T) ≤ max

[
v(S \ s) + v(T ∪ s), max

t∈T\S
v(S ∪ t \ s) + v(T ∪ s \ t)

]
(M \)

13

Theorem 7.2 (Fujishige and Yang [16]). A function v : 2[n] → R has the gross
substitutes property iff it is M \-concave.

Proof. The fact that M \-concavity implies gross substitutability is easy to see,
since taking T ⊆ S \ s we recover submodularity: v(S) + v(T) ≤ v(S \ s) + v(T ∪ s)
which can be rewritten as v(s|S \ s) ≤ v(s|T). Taking |S \ T | = 1 and |T \ S| ≥ 2,
we recover (WL). Since by submodularity v(S) + v(T) ≥ v(S \ s) + v(T ∪ s), so if
v(S)+v(T) ≤ v(S\s)+v(T∪s), then v(U∪s) = v(U)+v(s|T) for any S ⊆ U ⊆ T , mak-
ing (WL) hold for any t ∈ T \S. On the other hand, if v(S)+v(T) > v(S\s)+v(T ∪s),
then: v(S) + v(T) ≤ maxt∈T\S v(S ∪ t \ s) + v(T ∪ s \ t), which is exactly (WL).

For the other direction, assume that v is gross substitutes and we want to show is
satisfied (M \). First, consider the following transformation: given v : 2[n] → R, define
another valuation function on 2n items by adding n dummy items: ω : 2[2n] → R,
ω(S) = v(S ∩ [n]). It is straightforward to check that if v is gross substitutes then so
does ω. Now we define the condition (M) on ω as follows: for all sets S, T ⊆ [2n] with
|S| = |T | and s ∈ S \ T :

ω(S) + ω(T) ≤ max
t∈T\S

ω(S ∪ t \ s) + ω(T ∪ s \ t) (M)

It is simple to see that if ω satisfied (M) for all sets of equal cardinality, then v satisfied
(M \), since any pair of sets S, T ⊆ [n] map to equal cardinality sets S′, T ′ ⊆ [2n] by
padding the smaller set with dummy elements. Notice that (M) on ω implies (M \)
on v, since the term v(S \ s) + v(T ∪ s) accounts for the possibility that t ∈ T \ S in
(M) is a dummy item of [2n].

So, we only need to prove that if ω is a gross substitutes valuation, then it also
satisfied (M). For |S \ T | = |T \ S| = 1, the property in trivial. For |S \ T | =
|T \ S| = 2, this follows directly from Lemma 4.3. Now we prove by induction on
k = |S \ T | = |T \ S|. Fix some arbitrary s̃ ∈ S \ (T ∪ s) and find t̃ ∈ T \ S
maximizing ω(T ∪ s̃\ t̃)−ω(S∪ t̃\s). Now, apply induction on the sets S and T ∪ s̃\ t̃.
We get that there is t ∈ T \ (S ∪ t̃) such that:

ω(S) + ω(T ∪ s̃ \ t̃) ≤ ω(S ∪ t \ s) + ω(T ∪ {s, s̃} \ {t, t̃})

By the case with k = 2 with sets T and T ∪ {s, s̃} \ {t, t̃}, we know that:

ω(T) +ω(T ∪{s, s̃}\{t, t̃}) ≤ max[ω(T ∪ s\ t) +ω(T ∪ s̃\ t̃), ω(T ∪ s̃\ t) +ω(T ∪ s\ t̃)]

If the maximum corresponds to the first expression, this together with the previous
inequality, gives us exactly what we want to prove, i.e., ω(S) + ω(T) ≤ ω(S ∪ t \ s) +
ω(T ∪s\t), which corresponds to condition (M). If the maximum is the second expres-
sion we use the choice of t̃ to see that: ω(T∪s̃\t̃)−ω(S∪t̃\s) ≥ ω(T∪s̃\t)−ω(S∪t\s).
This together with the previous inequalities also leads to condition (M).

Valuated Matroids. The characterization of gross substitutability by the (M \)
also connects it to the concept of valuated matroids, due to Dress and Wenzel [12]:

Definition 7.3. Let
(
[n]
k

)
= {S ⊆ [n]; |S| = k}. We say that a map ω :

(
[n]
k

)
→ R

is a valuated matroid if is satisfied the following version of the exchange property:
given S, T ∈

(
[n]
k

)
and s ∈ S \ T , there exists t ∈ T \ S such that:

ω(S) + ω(T) ≤ ω(S ∪ t \ s) + ω(T ∪ s \ t)
14

In particular, Theorem 7.2 together with the discussion in its proof imply that:

Lemma 7.4. A valuation v : 2[n] → R satisfies the gross substitutes property iff
the map ω :

(
[2n]
n

)
→ R defined by ω(S) = v(S ∩ [n]) is a valuated matroid. Also, if

v satisfies the gross substitutes property then for every k ≤ n, the restriction of v to(
[n]
k

)
is a valuated matroid. In other words, given two sets of equal cardinality and a

gross substitutes valuation, then (M) is satisfied.

8. Convolution operation. As we saw in Section 2, one cannot build gross
substitute functions by taking linear combinations of simpler gross substitute, since
gross substitutability is not closed under addition. However, this class is closed under
a different operation, called convolution.

Theorem 8.1 (Lehmann, Lehmann and Nisan [29] and Murota [31]). Given two
valuation functions v1, v2 satisfying the gross substitutes property then the valuation
function v = v1 ∗ v2 also satisfied the gross substitutes property, where:

v1 ∗ v2(S) = max
S1⊆S

v1(S1) + v2(S \ S1)

Proof. We will give an algorithmic proof of the previous theorem based on a
couple of observations about the Walrasian tatônnement procedure. First note that
we can find S ∈ D(v1 ∗ v2, p) by finding a Walrasian equilibrium in an economy
with items [n] and three players with valuations v1, v2, u where u(S) =

∑
j∈S pj . Let

S1, S2, U be the partition of the items induced by such equilibrium. Then, this is the
partition maximizing v1(S1) + v2(S2) + p(U) = p([n]) + [v1(S1) + v2(S2)− p(S1 ∪S2)].
In particular, S1, S2 must be the optimal partition of S = S1 ∪ S2 among v1, v2,
therefore, S maximizes (v1 ∗ v2)(S)− p(S) and therefore S ∈ D(v1 ∗ v2, p).

Second observe that for gross substitute valuations the Walrasian tatônnement
procedure (Algorithm 1) always outputs a partition of the goods if we are careful
to always select Xi ∈ D(vi, pi) such that Si ⊆ Xi. This can be easily implemented
by computing Xi via the greedy algorithm (Algorithm 2) initialized with Xi = Si.
Moreover, the partition is such that

∑
i v
i(Si) ≥

∑
i v
i(S∗i) + δn. For rational valua-

tions, we can rescale them such that vi(Si) are integers. In such case, taking δ < 1
n

guarantees that Walrasian tatônnement outputs the optimal allocation.
Finally, in the description of Algorithm 1 we initialized the prices as zero and

the allocations such that agent 1 initially has all the goods. Notice that it enough
to initialize with a price p ∈ Rn+ and a partition S1, . . . , Sn such that there is Xi ∈
D(vi, p) such that Si ⊆ Xi.

Those observations together can be used to give an elementary proof of Theorem
8.1. We show that v1 ∗ v2 satisfy the Definition 1.3. Let S ∈ D(v1 ∗ v2, p) and
(v1 ∗ v2)(S) = v1(S1) + v2(S2). Consider a Walrasian equilibrium in the economy
formed by v1, v2, u. Let q be the price vector in such equilibrium. By the Second
Welfare Theorem, we take the allocation in equilibrium as S1, S2, U = [n] \ (S1 ∪ S2).
Let p′ be a price vector with p ≤ p′. We want to show that there is a set X ∈
D(v1 ∗ v2, p′) such that S ∩ {j; pj = p′j} ⊆ X.

For that, define u′(S) =
∑
j∈S p

′
j and consider the Walrasian tatônnement proce-

dure for the economy defined by v1, v2, u′ . Initialize such procedure with allocation
S1, S2, U and price vector q. This is a valid initialization, since Si ∈ D(vi, q) and also,

15

U ⊆ {j; qj ≤ p′j} ∈ D(u′, q). Now, let S′1, S
′
2, U

′ be the final outcome of the Wal-
rasian tatônnement procedure. Observe that if j ∈ S1 ∪ S2, then qj ≥ pj , otherwise
q wouldn’t be Walrasian for v1, v2, u. Now, if p′j = pj , then such item couldn’t have
been acquired by u′, since it would never be in his demand for such price. Therefore
j ∈ S′1 ∪ S′2. Hence, (S1 ∪ S2) ∩ {j; pj = p′j} ⊆ S′1 ∪ S′2.

A corollary of Theorem 8.1 is that assignment valuations are gross substitutes: it
is straightforward from the definition that an assignment valuation function can be
written as a convolution of unit-demand functions, one for each right-side node in the
bipartite graph.

9. Computing Walrasian Prices for gross substitutes. The problem of
computing a Walrasian equilibrium of an economy consisting of n items and m agents
with gross substitutes valuations v1, . . . , vm has two components: the first is called
the welfare problem, which consists in finding a partition S1, . . . , Sm maximizing∑
i v
i(Si). The second is the computation of Walrasian prices. There are various

approaches for those problems: the perhaps more classical line of approach is to use
variations of the tatônnement procedure. Nisan and Segal [36] propose a solution that
explores properties of gross substitutes to build a suitable linear program. Finally,
Murota [32, 33] gives a strongly polynomial time algorithm for this problem based on
a cycle-canceling approach.

We start by discussing how to obtain Walrasian prices from a solution to the
welfare problem. The first method is based on an idea by Gul and Stachetti [19]:

Lemma 9.1 (Gul and Stachetti [19]). Let W be the optimal welfare of an economy
with a set [n] of items and agents with gross substitute valuations v1, . . . , vm. Also,
let W−j be the welfare with the economy with the same agents and items [n] \ j. Then
the price vector p with pj = W −W−j is a vector of Walrasian prices for the original
economy.

The method proposed by Gul and Stachetti to compute Walrasian prices needs
access to the optimal allocation for n+1 economies: the original one and the economy
after each good is removed. An alternative approach is given by Murota [32]. First,
consider the following definition:

Definition 9.2 (Exchange graph). Let S1, . . . , Sm be an arbitrary allocation of a
set [n] of items to agents with gross substitute valuations v1, . . . , vm. For convenience,
we consider m additional dummy d1, . . . , dm and extend the valuations to this set in
such a way that for each set S, vi(S) = vi(S ∩ [n]). Also, let S′i = Si ∪ di.

The exchange graph is defined as a directed weighted graph with nodes [n+m] =
[n] ∪ {d1, . . . , dm} and weighted directed edges

(j, k) with weight wjk = −vi(Si ∪ k \ j) + vi(Si) for j ∈ S′i and k /∈ S′i

Lemma 9.3 (Murota [32]). If the allocation is optimal, the exchange graph has
no negative cycles and therefore, the shortest-path distance is well defined. For each
i ∈ [n + m], let φi be the distance from dummy node d1 to i. Then φi ≤ 0 and the

16

vector pi = −φi is a vector of Walrasian prices.

Proof. First assume that the graph has no negative cycles. In such case, the
concept of distance is well defined. Given a pair of dummy nodes di, dj , the weight of
the arcs wdi,dj = wdj ,di = 0, then φdi = 0 for all dummy nodes. Also, for all items k ∈
Si, the weight of the arc from a dummy node di to k is wdi,k = −vi(Si∪k)+vi(Si) ≤ 0,
so φk ≤ 0 for all nodes k. This allows us to define prices as pk = −φk. Since φ is the
shortest path distance, for all j ∈ S′i, k /∈ S′i: φk ≤ φj + wjk, which is equivalent to:
vi(Si) ≥ vi(Si ∪ k \ j) − pk + pj . Since k and j are possibly dummy items, this also
implies that: vi(Si) ≥ vi(Si ∪ k) − pk and vi(Si) ≥ vi(Si \ j) + pj . The last three
inequalities show that Si is a local optimal of the local search procedure (Algorithm
3), hence Si ∈ D(vi, p) by Theorem 5.6. Therefore, p is a vector of Walrasian prices.

Now we argue that if the allocation is optimal, then there are no negative cy-
cles. Given an optimal allocation, let p be a vector of Walrasian prices supporting
this allocation. Now define φj = −pj for all j ∈ [n] and φd = 0 for all dummy
items d. By the same argument as above, the fact that p is a vector of Walrasian
prices implies that: wij ≥ φi − φj , therefore for every cycle i1, i2, . . . , ik, i1 we have:∑k
t=1 witit+1 ≥

∑j
t=1 φit − φit+1 = 0.

The exchange graph has O(n + m) nodes and O((n + m)2) edges. Checking if
a graph has negative cycles can be done in time O(N · E) using the Bellman-Ford
algorithm, where N is the number of nodes and E is the number of edges. This gives
an O((n+m)3) algorithm to compute Walrasian prices for gross substitute valuations
given the optimal allocation.

10. Welfare Problem for gross substitutes. Finally, we discuss algorithmic
solutions to the welfare problem for gross substitute valuations. Before we start, we
mention a couple of important special cases of this problem. If vi(S) = maxj∈S wij
for all i ∈ [m], then this is the traditional maximum weighted matching problem.
If vi is the rank function of a matroid, then this corresponds to a special case of
the matroid intersection problem. For example, the problem of deciding if a graph
has k disjoint spanning trees naturally maps to the welfare problem with k agents
where the items correspond to edges of the graph and valuation functions correspond
to the rank function of the graphical matroid. We discuss three approaches for this
problem: tatônnement, linear-programming and cycle canceling. The first approach
has a natural economic intuition but yields only an approximation scheme. The
second approach produces an exact solution and runs in polynomial time. The third
approach is purely combinatorial and yields a strongly polynomial time algorithm.

10.1. Algorithms via the tatônnement procedure. In Section 1, the Wal-
rasian tatônnement procedure (Algorithm 1) was used as a proof device to show the
existence of Walrasian equilibria for gross substitute valuations. In this section we
discuss how to use it as an actual algorithm. We start by analyzing the running time
of Algorithm 1 using the greedy algorithm (initialized with Xi = Si) to compute the
demand oracle. Then we discuss variants of the implementation.

We assume that vi(S) is an integer (rescaling the input, if necessary) and define
M = maxi∈[m] v

i([n]). We argued in Section 1 that each price can increase at most
M/δ times. This gives a bound of nM/δ on the number of total price increases.

In what follows we argue that there are at most m+nM/δ executions of the while
loop in Algorithm 1. Consider the following implementation of the while loop: start

17

with a queue containing all the agents 1, . . . ,m. At each time, pop agent i from the
the queue and compute Xi ∈ D(vi, pi) with Si ⊆ Xi. If Xi 6= Si, execute the while
loop and for each k 6= i such that Sk changes during the while loop, add k to the
queue if he is not already there.

Noticed at this point we removed i from the queue. After the execution of the
while loop, we don’t need to look at i again, unless Si changes, i.e., unless some item
j is taken away from i, since by the fact that valuations are gross substitutes and the
prices only increase during the process, Si ∈ D(vi, pi) if the prices of items in Si stay
the same.

Each execution of the loop is dominated by the execution of the greedy demand
oracle that takes O(n2) time. This gives us a total running time of O(n2(Mδ n+m)).
This produces a partition S1, . . . , Sm such that

∑
i v
i(Si) ≥

∑
i v
i(S∗i) − δn as we

argued in Section 1. Taking δ = 1
2n , gives us:

∑
i v
i(Si) ≥

∑
i v
i(S∗i) − 1

2 and there-
fore

∑
i v
i(Si) =

∑
i v
i(S∗i) since both are integers. The running time in this case is

O(n2(Mn2 +m)).

The previous version runs in pseudo-polynomial time due to the linear depen-
dency on M . This can be easily improved to a dependency on log(M) by updating
the prices in a multiplicative fashion. Initialize all prices to zero and define the fol-
lowing price update rule: U(0) = δ and U(pj) = pj(1 + δ). So each price is in the
set {0, δ, δ(1 + δ), δ(1 + δ)2, . . .}. Now, we change Algorithm 1 in two ways: first we
calculate pi as pij = pj if j ∈ Si and pij = U(pj) otherwise. Also, when we update
prices inside the while loop, we update pj to U(pj). By the same argument as before,
prices never rise past M , so there are at most n · log1+δ(M) price updates. This
produces a running time of O(n2m+ 1

δn
3 logM). The solution produced is such that

vi(Si)−p(Si) ≥ vi(T)−p(T)−δ|T \ Si|−δp(T \Si) for all T ⊆ [n]. Taking T = S∗i (the
optimal partition) and summing for all i, we get: (1 + δ)

∑
i v
i(Si) ≥

∑
i v
i(S∗i)− n

δ .

Maximum matching. It is illuminating to look at the case of weighted maxi-
mum matching, i.e. vi(S) = maxj∈S wij . For this particular case, the Walrasian
tatônnement procedure takes the form of the auction method from Bertsekas [5] and
the ascending auction of Demange, Gale and Sotomayor [8]. It also closely resembles
Kuhn’s Hungarian Method [27]. For this particular case, the demand oracle can be
computed in time O(n), which gives us complexity O(Mδ n

2 + nm). Consider further
the special case of unweighted maximum matching, where n = m, wij ∈ {0, 1} and
the graph has a perfect matching. Since M = 1, this gives an (1−δ)−1-approximation
algorithm of running time O(1

δn
2). Taking δ = 1

2 we get exactly the 2-approximation
via the greedy algorithm for maximum matching. For δ = 1

n we get an O(n3) exact
algorithm. Taking δ = 1√

n
one gets a matching of size n −

√
n in time, O(n2

√
n).

After more
√
n iterations of an augmenting path algorithm, we are able to find the

optimal matching with total running time O(n2
√
n), which is the bound provided by

the Hopcroft-Karp algorithm [21].

10.2. Linear Programming algorithms. The second approach, proposed by
Nisan and Segal [36], is based on linear programming. They observe that the welfare
problem can be cast as the following integer program:

18

WIP = max

m∑
i=1

∑
S⊆[n]

xiS · vi(S) s.t.

∑
S3j

∑
i

xiS = 1, ∀j ∈ [n]

∑
S

xiS = 1, ∀i ∈ [m]

xiS ∈ {0, 1}, ∀i ∈ [m], S ⊆ [n]

Let WLP correspond to the linear programming relaxation of the previous prob-
lem, i.e., to the program obtained by relaxing the last constraint to 0 ≤ xiS ≤ 1.
Since it is a relaxation, WIP ≤WLP. Bikhchandani and Mamer [6] observe that when
vi are gross substitute valuations, this holds with equality, for the following reason:
by the duality theorem in Linear Programming, WLP corresponds to the solution of
the following dual program:

WLP = min
∑
i∈[m]

ui +
∑
j∈[n]

pj s.t.

ui ≥ vi(S)−
∑
j∈S

pj , ∀i ∈ [m], S ⊆ [n]

pj ≥ 0, ui ≥ 0, ∀i ∈ [m], j ∈ [n]

An optimal solution to the integer program corresponds to the welfare of a Wal-
rasian equilibrium WIP =

∑
i v
i(Si). If p are the corresponding Walrasian prices and

ui = vi(Si)−
∑
j∈Si pj , (u, p) corresponds to a feasible solution to the dual. Therefore

WLP ≤WIP.

Given this observation, Nisan and Segal propose solving the welfare problem by
solving the dual linear program above using a separation based linear programming
algorithm, such as the ellipsoid method. The program has n + m variables but an
exponential number of constraints. In order to solve it, we need to provide a separation
oracle, i.e., an polynomial-time algorithm to decide, for each (u, p) if it is feasible and
if not, produce a violated constraint. The problem that the separation oracle needs to
solve is to decide for each agent i if ui ≥ maxS v

i(S)−
∑
j∈S pj . For gross substitute

valuations, this can be easily solved by the greedy algorithm (Algorithm 2).
The algorithm described above computes the value W ∗ =

∑
i v
i(Si) of the optimal

allocation. In order to compute the optimal allocation itself, one can proceed as
follows: fix an arbitrary item j and for all agents i′ compute the value of the optimal
allocation, conditioned on agent i receiving j. In order words, compute the value of
the optimal allocation of items [n] \ j to agents with valuation ṽi = vi for i 6= i′ and
ṽi
′
(S) = vi

′
(S|j) and let W ∗j→i′ be the solution. Then there must be some agent i′

for which W ∗ = vi
′
(j) + W ∗j→i′ . Allocate j to this agent and recursively solve the

allocation problem with on [n] \ j for valuations ṽ.

10.3. Cycle-canceling algorithms. Finally we describe a purely combinatorial
approach proposed by Murota [32, 33] based on the Klein’s cycle-canceling technique
[24] for the minimum-cost flow problem. This approach has the advantage that it

19

leads to a strongly polynomial time algorithm. The algorithm is presented in three
parts: first we provide a generic cycle canceling algorithm that finishes in finite time
but without additional running time guaranteed. Then, we show that a careful choice
of cycles can lead to a (weakly) polynomial time algorithm, following an analysis by
Goldberg and Tarjan [18]. Finally, an additional idea due to Zimmermann [46] leads
to a strongly polynomial time algorithm.

10.3.1. Improving the allocation along negative cycles. Murota’s opti-
mality criteria (Lemma 9.3) states that an allocation S1, . . . , Sm is suboptimal iff the
exchange graph (Definition 9.2) contains a negative-weight cycle.

Let C be this negative weight cycle. First we note that an edge going out of
S′i (Si augmented with a dummy item) corresponds to the exchange of a (possibly
dummy) element ai ∈ S′i by an element bi /∈ S′i. The value of the edge corresponds to
the change in value for i by replacing ai by bi, i.e., waibi = vi(Si)− vi(Si ∪ bi \ ai).

This observation suggests the following approach to improve the allocation: per-
form the exchanges prescribed by such cycle, i.e., if M i = {(ai1, bi1), . . . (aiki , b

i
ki)} is

the set of edges in C going from S′i, then update Si to Si∪{bi1, . . . , biki}\{a
i
1, . . . , a

i
ki}

(ignoring the dummy nodes). The change in welfare is given by
∑
i v
i(Si) − vi(Si ∪

{bi1, . . . , biki} \ {a
i
1, . . . , a

i
ki}) while the sum of weights of edges in the cycle is given by∑

i

∑
(a,b)∈Mi vi(Si)− vi(Si ∪ b \ a). In general, those two quantities are different, so

the fact that the cycle has negative weight is not enough to guarantee that performing
the exchanges prescribed by it will result in an improvement in welfare.

Murota shows in [33] a sufficient condition for the total weight of the cycle to be
equal to the change in welfare by performing the exchanges.

Lemma 10.1 (Unique Minimum Weight Matching Condition). Given a gross
substitute valuation v, a set S, A = {a1, . . . , ak} ⊆ S, B = {b1, . . . , bk} ⊆ [n] \ S,
consider the bipartite graph G with left nodes A, right nodes B and edge weights
waibj = v(S) − v(S ∪ bj \ ai). If M = {(a1, b1), . . . , (ak, bk)} is the unique minimum
weight matching in the graph, then:

v(S)− v(S ∪B \A) =
∑k
j=1 v(S)− v(S ∪ bj \ aj)

Proof. The proof of the lemma follows by induction on k. For k = 1, the theorem
is trivial. Assume now it holds for k − 1. First observe that: v(S)− v(S ∪ B \ A) =
wakbk+v(S∪bk\ak)−v(S∪B\A). Define S̃ = S∪bk\ak. If we can prove that the graph
G̃ defined by left nodes A\ak, right nodes B\bk and weights w̃aibj = v(S̃)−v(S̃∪bj\ai)
has (a1, b1), . . . , (ak−1, bk−1) as the unique minimum weight matching and moreover
w̃aibi = waibi then we can apply the induction hypothesis and conclude that:

v(S ∪ bk \ ak)− v(S ∪B \A) =
∑k−1
i=1 w̃aibi =

∑k−1
i=1 waibi

In order to (a1, b1), . . . , (ak−1, bk−1) is the unique minimum matching, first we bound
w̃aibj and then we show that any other matching has strictly larger weight.

w̃aibj = v(S ∪ bk \ ak) + v(S)− [v(S ∪ {bk, bj} \ {ak, ai}) + v(S)]
∗
≥ v(S ∪ bk \ ak) + v(S)−

max{v(S ∪ bj \ ai) + v(S ∪ bk \ ak), v(S ∪ bj \ ak) + v(S ∪ bk \ ai)}
= min{waibj , waibk + wakbj − wakbk}

20

where the (∗) inequality follows from Lemma 4.3.
Now, given a matching M̃ different then (a1, b1), . . . , (ak−1, bk−1) on G̃, construct

an auxiliary graph in which we add the following edges for each (ai, bj) ∈ M̃ : (i) if
w̃aibj = waibj , then we add an edge between ai and bj with weight waibj and sign
+1. (ii) if w̃aibj = waibk +wakbj −wakbk we add edges between ai and bk with weight
waibk and sign +1, an edge between ak and bj with weight wakbj and sign +1 and
one edge between ak and bk with weight wakbk and sign −1. By a simply counting
argument, the signed degree of each node ai or bi with i < k is 1 and the signed
degree of nodes ak, bk is 0. Now we argue that the total signed weight of this graph
is at least

∑k−1
i=1 waibi . Indeed, if there are no edges incident to k this is obvious since

M was the unique minimum matching in G. If there are edges incident to k, consider
a cycle C containing edge (ak, bk) in the union between the M (with weight waibi)
and the +1-signed edges in the auxiliary graph. Let CM be the edges in the cycle
belonging to M and let CM̃ be the remaining edges. Note the the total weight of
CM is strictly smaller then the total weight of CM̃ since M is the unique minimum
matching. Therefore, we remove the edges in CM̃ from the auxiliary graph and add
the edges in CM , where adding an edge (ak, bk) with +1 sign is equivalent in removing
one edge (ak, bk) with −1 sign. By repeating this procedure we eventually obtain an
auxiliary graph with strictly smaller weight then the original and no incident edges on
ak, bk. The weight of such graph must be at least

∑k−1
i=1 waibi since M is the unique

minimum matching.
In order to finish the proof, we just need to argue that w̃aibi = waibi . By the

previous argument: w̃aibi ≥ min{waibi , wakbi + waibk − wakbk} = waibi since by the
minimality of matching M , waibi + wakbk < wakbi + waibk . For the other direction,
we again use Lemma 4.3 to see that:

v(S ∪ bi \ ai) + v(S ∪ bk \ ak) ≤ max{v(S) + v(S ∪ {bi, bk} \ {ai, ak}),
v(S ∪ bk \ ai) + v(S ∪ bi \ ak)} = v(S) + v(S ∪ {bi, bk} \ {ai, ak})

since waibi + wakbk < wakbi + waibk implies that v(S ∪ bi \ ai) + v(S ∪ bk \ ak) >
v(S ∪ bk \ ai) + v(S ∪ bi \ ak).

The next theorem provides an algorithm for obtaining a cycle of negative weight
satisfying the Unique Minimum Weight Matching Condition starting from an arbi-
trary cycle of negative weight.

Lemma 10.2. Given a cycle C of negative weight in the exchange graph, then if
for some i, M i = {(a, b) ∈ C; a ∈ S′i} is not the Minimum Weight Matching between
Ai = {a ∈ [n]; (a, b) ∈ M i} and Bi = {b ∈ [n]; (a, b) ∈ M i}, then there is cycle C ′ of
negative weight with strictly smaller number of edges.

Proof. Assume that there is an alternative perfect matching

M ′ = {(aij1 , b
i
j2), (aij2 , b

i
j3), . . . , (aijk , b

i
j1)}

with total weight no larger then the original one. Consider now k cycles in graph G
where the t-th cycle Ct is formed by edge (aijt , b

i
jt+1

) and the path from bijt+1
to aijt

in the original cycle C. Each cycle Ci is either C (if this edge of M ′ is also in M i) or
is a cycle with smaller number of edges (otherwise).

Next we present a counting argument, there exists an integer ` such that the
multi-set union of cycles {Ci;Ci 6= C} has ` copies of each edge in C \M i, `−1 copies

21

of each edge in M i and one copy of each edge in M ′. The argument is as follows:
transverse the cycle in the following way: start in bij1 and follow cycle C until aijk ,

then take an edge (aijk , b
i
jk

) in M i and transverse the cycle from bijk to aijk−1
, take then

the edge (aijk−1
, bijk−1

) in M i and then transverse C from bijk−1
to aijk−2

, continuing

the same procedure until we take edge (ai1, b
i
1) in which case we complete an integral

number ` of loops around the cycle. The transversal of from bijt+1 to aijt corresponds

to the edges of cycle Ct minus the edge in M ′. So if we look at the edges transversed
add M ′ and subtract M i, we get exactly the multi-set of edges in the union of the
cycles Ct.

Therefore, the sum of weights of such cycles is at most ` times the sum of weights
in C and therefore negative. Then there must exist some cycle Ci 6= C of negative
weight, contradicting that C has minimal number of edges among all negative cycles.

ALGORITHM 4: Cycle canceling

Input: gross substitute valuations v1, . . . , vm : 2[n] → R+

Initialize with an arbitrary partition S1, . . . , Sm of [n]
Define G implicitly as the exchange graph corresponding to the current allocation
while G has negative weight cycles

find a negative cycle C satisfying the Unique Min Matching Cond.
let Ai = {a; (a, b) ∈ C, a ∈ Si} and Bi = {b; (a, b) ∈ C, a ∈ Si}
update Si = Si ∪Bi \Ai for all i.

The previous discussion suggests an algorithm that strictly improves an allocation,
yet it doesn’t still guarantee polynomial running time. In what follows we show that
a careful choice of cycles and will be enough to guarantee polynomial runtime. This
will be done by measuring the progress in terms of a suitable potential function.

10.3.2. Polynomial running time via canceling minimum mean weight
cycles. The cycles we will consider are the cycles with minimum mean weight, i.e.,
cycles minimizing: w(C)/|C|, where w(C) =

∑
e∈C we. A minimum mean cycle in a

directed graph can be found in time O(N ·E) where N is the number of nodes and E is
the number of edges using an algorithm5 due to Karp [22]. We note in particular that
the algorithm in Lemma 10.2 can be used to find a cycle minimum mean weight cycle
Ct satisfying the Unique Minimum Matching Condition, since the cycles Ct produced
by the algorithm suggested by the lemma are such that:

min
t

w(Ct)

|Ct|
≤
∑
t w(Ct)∑
t |Ct|

=
` · w(C)− w(M i) + w(M ′)

` · |C|
≤ ` · w(C)

` · |C|
(CD)

This completes the description of the Minimum mean weight cycle canceling algo-
rithm. In order to show that it runs in weakly polynomial time, we bound the number
of iterations using a potential function.

Given an allocation S1, . . . , Sm we define the slackness ε(S1, . . . , Sm) as the mini-
mum ε ≥ 0 such that there exist a price p, such that for all agents i, a ∈ S′i and b /∈ S′i

5Sketch of Karp’s algorithm for the minimum mean cycle problem: given a strongly-connected
weighted directed graph, fix an arbitrary source s and compute via dynamic programming the min-
imum weight path of length k from s to v for all v, using the recursion Fk(v) = minu Fk(u) + wuv .
Then the weight of the minimum weight cycle is given by µ = minv max0≤k<n(Fn(v)−Fk(v))/(n−k).

22

(possibly dummy items),

vi(S′i ∪ b \ a)− pb + pa ≤ v(S′i) + ε.

A solution is optimal iff ε(S1, . . . , Sm) = 0. In some sense, this function measures
how sub-optimal an allocation is. The presentation is an adaptation of the proof
of Goldberg and Tarjan [18] for the minimum cost circulation algorithm in strongly
polynomial time via cycle canceling.

The first lemma relates ε to the value of the minimum mean-weight cycle:

Lemma 10.3 (Goldberg, Tarjan [18]). Given a certain allocation S1, . . . , Sm,
then ε(S1, . . . , Sm) = −µ where µ is the value of the minimum mean weight cycle in
the exchange graph corresponding to this allocation.

Proof. This can be obtained by writing the natural Linear Program that computes
ε and taking the dual. Given a directed graph (N,E) with costs cij on edges, consider
the program:

min ε s.t. cij − pi + pj ≤ ε,∀(i, j) ∈ E

By the duality theorem, this corresponds to the solution of the following Linear Pro-
gram:

max
∑

(i,j)∈E −cijxij s.t.

∑
k;(i,k)∈E xik =

∑
k;(k,i)∈E xki,∀i ∈ N∑

(i,j)∈E xij = 1

xij ≥ 0,∀(i, j) ∈ E

which corresponds to the circulation of minimum mean-weight. Since each circulation
x ∈ RE+ can be decomposed in weighted sum of cycles x =

∑
t αt · zt where αt ∈ R+

and zt ∈ RE+ is the indicator vector of a cycle. Therefore, there must be a mean-weight
circulation that is a cycle and this must be the mean-weight cycle.

The following corollary follows from the previous proof and complementarity
slackness:

Corollary 10.4. Given a certain allocation S1, . . . , Sm and a price vector with
respect to which the allocation is ε(S1, . . . , Sm)-optimal, then if C is the mean weight
minimum cycle, then along the edges (a, b) of the cycle, wab + pa − pb = −ε. In
particular, if the cycle satisfies the Unique Minimum Weight Matching Condition,
performing the changes prescribed by the cycle produces an improvement of ε · |C| to
the value of the allocation.

The next lemma uses this fact to shows that canceling a mean weight negative
cycle in Algorithm 4 doesn’t increase the slackness ε(S1, . . . , Sm).

Lemma 10.5. Given an allocation S1, . . . , Sm, then if C is a minimum mean
weight cycle satisfying the Unique Minimum Weight Condition, then performing the
exchanges prescribed by the cycle can’t reduce ε(S1, . . . , Sm).

23

Proof. Let ε = ε(S1, . . . , Sm) and p be a price vector with respect to which the
allocation is optimal. Let S′i be the current allocation (augmented with the i-th
dummy item) and S′′i = Si ∪Bi \Ai using the notation of Algorithm 4.

By ε-optimality, we know that vi(S′i)− vi(Si ∪ b \ a)− pa + pb ≥ −ε for all a ∈ S′i
and b /∈ S′i. Fix some i and define price vector p′ such that p′a = pa for a ∈ Si and
p′b = pb + ε for b /∈ Si. This gives us vi(S′i) − vi(Si ∪ b \ a) − p′a + p′b ≥ 0. Hence by
Theorem 3.4, vi(S′i) − p(S′i) = vi(S′i) − p′(S′i) ≥ vi(T) − p′(T) for all T ⊆ [n + m].
This gives us

vi(S′′i)− p(S′′i) = vi(S′i)− p(S′i) + ε · |Ai| ≥ vi(S′′i ∪ b \ a)− p′(S′′i ∪ b \ a) + ε · |Ai|
≥ vi(S′′i ∪ b \ a)− p(S′′i ∪ b \ a)− ε

where the equality comes from the complementarity conditions in the previous lemma,
the first inequality comes with the previous inequality with T = S′′i ∪ b \ a and the
second inequality comes from the definition of p′. The inequality obtained says that
for the new allocation, the same price p proves that the slackness ε(S′′1 , . . . , S

′′
m) is at

most ε.

The previous two lemmas already give us a weakly polynomial time bound on the
running time of Algorithm 4. Let S∗1 , . . . , S

∗
m be the optimal allocation, S1, . . . , Sm

be an arbitrary allocation. Then we know by the definition of ε optimality and by
Theorem 3.4 that:

Gap(S1, . . . , Sm) :=
∑
i

vi(S∗i)−
∑
i

vi(Si) ≤ n · ε(S1, . . . , Sm)

Since after one iteration, the allocation improves by at least ε · |C|, Gap(S1, . . . , Sm)
goes down by at least a factor of 1 − 1/n. Since the initial gap is at most M =∑
i v
i([n]), then in n log(nM) iterations, the gap is at most 1/n, which means that

the solution is optimal. Each iteration consists in building the exchange graph, which
takes time O(T · (n+m)2), where T is the cost of evaluating the valuation function on
any given set; and finding the minimum mean weight cycle, which takes time O((n+
m)3). This gives an overall running time of O((T ·(n+m)2 +(n+m)3) ·n · log(n ·M)).

10.3.3. Cycle canceling in strongly polynomial time. Finally, we use a
variation of the minimum mean weight cycle canceling algorithm due to Zimmermann
[46] to make the running time to strongly polynomial time. Consider a vector β with
components βij ∈ {0, 1} for i ∈ [n] and j ∈ [n + m] where i represents an agent
and j represents a (possibly dummy) item. We say that an allocation S′1, . . . , S

′
m is

(ε, β)-optimal iff there is a price vector p such that for all a ∈ S′i and b /∈ S′i it holds
that:

vi(S′i ∪ b \ a)− pb + pa ≤ v(S′i) + ε · βib

We define the β-slackness εβ(S1, . . . , Sm) as the smallest ε such that an allocation is
(ε, β)-optimal.

Similarly to Lemma Lemma 10.3, the value of εβ(S1, . . . , Sm) for a given vector β
is equivalent to a negative cycle problem. The next lemma can be obtained following
the proof of Lemma 10.3 substituting ε by εβij in the primal program and taking the
corresponding dual.

24

Lemma 10.6. Consider an allocation S1, . . . , Sm and a binary vector β such that
every negative cycle in the exchange graph has at least one edge (a, b), a ∈ S′i, b /∈ S′i
with βib = 1. Then ε(S1, . . . , Sm) = −µβ where µβ = mincycle C w(C)/β(C) where
β(C) =

∑
(a,b)∈C βi(a),b where i(a) is the agent holding item a in the current allocation.

One can compute such cycle using Megiddo’s technique [30] for solving combi-
natorial optimization problems with rational objective function. As a brief overview,
Megiddo’s technique consists in solving the problem of deciding if a graph has a
negative weight cycle (which can be solved, for example, using the Bellman-Ford al-
gorithm) using weights parametrized by a parameter t, i.e., we(t) = we(t)− t · βe(t).
This can be solved in strongly polynomial time by running the standard Bellman-Ford
algorithm using the following observation: the algorithm just performs additions and
multiplications by scalar and comparisons. The first two operations can be done on
the parametrized weights. For comparisons, one can augment the Bellman-Ford algo-
rithm with an interval I of parameters initialized by (−∞,∞). Once a comparison is
performed, the algorithm tries to decide if the comparison evaluation in the same way
for all parameters in the interval. If so, the comparison is decided. If not, the interval
is split and the computation progresses independently in each interval. This method
gives the solution for all parameters. Then, the cycle with smallest w(C)/β(C) cor-
responds to the largest parameter t for which there is no negative cycle.

By the same argument as before, it is possible to find a cycle minimizing the ratio
w(C)/β(C) while satisfying the Unique Minimum Weight Condition. It follows from
the same argument used in Lemma 10.1 – essentially by substituting |Ct| by β(Ct) in
inequality (CD).

The definition of (ε, β)-optimality allows for a stronger version of Lemma 10.5
which measures progress by showing that if an allocation is (ε, β)-optimal, then after
the algorithm improves the allocation by exchanging items along a minimum ratio
cycle, then the allocation is (ε, β′)-optimal for some stricter vector β′, i.e., a vector
such that β′ ≤ β and β′ 6= β.

Lemma 10.7. Given an (ε, β)-optimal allocation S1, . . . , Sm, then if C is a nega-
tive cycle minimizing w(C)/β(C) satisfying the Unique Minimum Weight Condition,
then performing the exchanges prescribed by the cycle will result in an (ε, β′)-allocation
for where for j ∈ Si, β′ij = 0 and for j /∈ Si, β′ij = βij.

Proof. The proof follows the same structure and notation of Lemma 10.5. Let
p be a price vector for which the original allocation is (ε, β)-optimal. Therefore:
vi(S′i) − vi(S′i ∪ b \ a) − pa + pb ≥ −ε · βib for all a ∈ S′i and b /∈ S′i. Define price
vector p′ such that p′j = pj + βij for j /∈ S′i and p′j = pj otherwise. Then following

the arguments in Lemma 10.5 and denoting β(Ai) =
∑
j∈Ai βij , we get:

vi(S′′i)− p(S′′i) = vi(S′i)− p(S′i) + ε · β(Ai)

≥ vi(S′′i ∪ b \ a)− p′(S′′i ∪ b \ a) + ε · βi(Ai)
≥ vi(S′′i ∪ b \ a)− p(S′′i ∪ b \ a)− ε · βi((S′′i ∪ b \ a) \ S′i) + ε · βi(Ai)

If b /∈ S′i, then: βi((S′′i ∪ b \ a) \ S′i) − βi(Ai) ≤ βib. If b ∈ S′i then: βi((S′′i ∪ b \ a) \
S′i)− βi(Ai) ≤ 0.

25

Corollary 10.8. In the setting of the previous lemma, after the exchanges are
performed, either the new allocation is optimal, or in all negative cycles of the new
exchange graph there is at least one edge (a, b) with a ∈ S′i and β′ib = 1.

Proof. If C is a negative cycle in the resulting graph then summing the inequali-
ties wab + pb − pa ≥ −εβ′i(a)b, then we get 0 > w(C) ≥ −εβ′(C), so β′(C) > 0.

The previous lemmas suggest the following algorithm: initialize β with βib = 1
for all i ∈ [m] and b ∈ [n + m]. Then run the cycle canceling algorithm picking the
cycle minimizing w(C)/β(C). After canceling the cycle, update β by setting to zero
the components βib according to Lemma 10.7.

Corollary 10.8 guarantees that while the allocation is sub-optimal there will be
a negative cycle with positive β-value, so the algorithm finishes on an optimal al-
location. Given that the chosen cycle in each iteration has at least one edge corre-
sponding to a 1-entry and this is set to zero in the end of each iteration, there are
at most (n+m)2 iterations. Computing a minimum ratio cycle can be done in time
O(E ·N2 log(N)) where N is the number of edges and E is the number of edges. If T
is the cost of evaluating a valuation function, the overall complexity of the algorithm
is: O((T · (n+m)4 + (n+m)6 log(n+m))).

Theorem 10.9 (Murota [33]). The algorithm that finds a minimum weight mean
cycle with minimum number of edges among such cycles (Algorithm 4) is a strongly
polynomial time algorithm for the gross substitute welfare problem.

We remark that Murota [33] gives a strongly polynomial time algorithm for a more
general problem called the Valuated Matroid Intersection problem. In this problem
there is a bipartite graph defined by (U, V,E) a weight function w : E → R and gross
substitute functions vU : 2U → R and vV : 2V → R, find the matching M maximizing
w(M) + vU (MU) + vV (MV) where MU and MV are the subsets of U and V covered
by the matching. The techniques for solving this problem are very similar to the ones
presented in this survey: they involve building an exchange graph and improving
the allocation along suitable cycles. Besides the cycle canceling approach, Murota
also proposes an additional strongly-polynomial time algorithm based on a flow-like
primal-dual approach.

11. Further remarks: Applications, Representation, Approximability
and Relations to other classes. Gross substitutes have a wide range of applications
in many different fields and therefore it is not surprising that this concept has been re-
discovered many times in different contexts. In economics it was originally conceived
as a natural condition to express substitutability among workers in two-sided labor
markets. To the present date, the original paper by Kelso and Crawford [23] has
more then 800 citations and the term ”gross substitutes” appears in more then 3500
publications according in Google Scholar. A comprehensive exposition on all the work
is out of the scope of this survey, but we point the reader to some key generalizations
and applications of gross substitutes in economics that will serve as starting point
to the reader: Roth [40], Hatfield and Milgrom [1], Sun and Yang [43, 44], Gul and
Stachetti [19, 20] and Bikhchandani and Mamer [6].

In Discrete Mathematics, the concept of introduced by Dress and Wenzel [13, 12]
to generalize the Grassmann-Plücker relations in p-adic analysis. Their prototypi-
cal example of a valuated matroid (which roughly corresponds to a gross substitute

26

valuation defined only on sets of same cardinality, see Section 7 for a complete dis-
cussion) is the following function parametrized by a prime number p: ωp : (Qn)n → Z
that associates every n-tuple of n-dimensional rational vectors x1, . . . , xn ∈ Qn to:
ωp(x1, . . . , xn) = −∞ if det(x1, . . . xn) = 0 and ωp(x1, . . . , xn) = k if det(x1, . . . xn) =
p−k · ab for integers a and b not divisible by p. The greedy algorithm for valuated ma-
troids is presented in [13] as a generalization of the greedy algorithm that finds among
a finite set of Qn-vectors a basis minimizing the p-adic valuation of the determinant.
We refer to Murota’s book [34] for a comprehensive survey of applications of valuated
matroids and gross substitute valuations to problems in engineering and operations
research.

We finalize this survey discussing issues around the representation of gross sub-
stitute valuations and relations to other classes of valuation functions. We decided
to keep the discussion of those points in the further remarks section since those are
less well-understood properties, unlike the other topics presented in this survey. Also,
unlike the rest of the survey, we assume for this section familiarity of the reader with
Matroid Theory [28, 38].

11.1. Representation and Approximation. One of the central issues in auc-
tion design is how to design a language in which agents can represent their valuation
in a compact and expressible way. The fact that the demand oracle problem for gross
substitute valuations allows for simple and efficient greedy algorithms might raise
suspicion that valuations in this class may admit simple and compact representation.
Also contributing to this suspicion is the observation by Lehmann, Lehmann and
Nisan [29] that the set of gross substitute valuations has measure zero with respect
to the set of all valuation functions. To make this statement precise, consider the
representation of a valuation function v : 2[n] → R as a vector in R2n−1 indexed by
non-empty subsets of [n]. This allows for a geometric representation of a class of
valuations functions V ⊆ {v : 2[n] → R; v(∅) = 0} as a subset of the Euclidean space
G(V) ⊆ R2n−1. The observation in [29] follows as a consequence of the isosceles trian-
gle property of the ultra-metric induced by gross substitute valuations (Iso) discussed
in Section 4. Equation (Iso) implies that certain linear relations among the compo-
nents of vector representation of each valuation function must be satisfied. Therefore
G(GrossSubstitutes) is contained in the union of finitely many hyperplanes and
hence has measure zero. We also know from Section 2 that G(GrossSubstitutes) is
not convex. This is in sharp contrast to G(Submodular) which is a full dimensional
convex polyhedral set.

The observations in the previous paragraph motivate the question of whether gross
substitute valuations admit a compact representation. To make this question precise,
we need to define what we mean by representation. Intuitively, we will measure the size
of a representation as the amount of memory a computer would require to store this
valuation function. Also, to avoid discussing how to represent real numbers, we restrict
our attention to integer-valued valuations, i.e., valuations of the type v : 2[n] → Z.
Each integer z ∈ Z requires dlog2(z+ 1)e of memory space in order to store its binary
representation. The naive representation of any integer-valued valuation function such
that v(S) ≤M for each S requires at most (2n − 1) · dlog2(M + 1)e space.

Certain classes of valuations can be represented with a lot less space, for exam-
ple, unit demand valuations can be represented by n integers corresponding to the
singleton values v({i}) for all i ∈ [n], therefore requiring n · dlog2(M + 1)e space. For
any class of valuation we can ask the same question: what is the minimum amount
of space necessary to represent an integer-valued valuations of this class over n items

27

with values at most M ? The main reason to study this question is because often the
representation size is a proxy for complexity and expressivity of a valuation function.
An equally compelling reason is that compact representations allow for concise bid-
ding that facilitate auction design. This question is also closely related to counting
the number of distinct valuation of this class over n items and value at most M . If
V (n,M) is this number, then it is possible to assign an unique index to each of those
valuations and represent each such valuation by its index. Since each valuation is
now represented by an index between 1 and V (n,M), the size of representation is
dlog2 V (n,M)e. Although not a very useful representation, this gives a lower bound
on the size of any given representation: any representation must have size at least
dlog2 V (n,M)e.

The exact space required to represent gross substitute functions is unknown. It
is strictly smaller then (2n − 1) · dlog2(M + 1)e since by the discussion in Section 4,
the values v(S) satisfy various linear relations. Here we ask how smaller it is ? More
precisely, can the exponential dependency on n be improved upon ?

A negative answer comes from the fact that matroid rank functions are a subclass
of gross substitutes. A matroid rank function takes values in {0, 1, . . . , n} so admits
a naive representation of size O(2n log n). Knuth [25] proved that log2 log2mn ≥
n − O(log n) where mn is the total number of matroid rank functions with base set
[n]. Since a representation of size s can encode at most 2s different valuation functions,
in order to represent all matroid rank functions we require at least 2n/poly(n) size.
This in particular implies that the exponential dependency in n can’t be improved.

Balcan and Harvey [4] show that even if we settle for an approximation of the
valuation function v, we still can’t improve the exponential dependency on n. We
say that v̂ is an an α-approximation of v if for every S ⊆ [n], the relative error is

at most α, i.e, v(S) ≤ v̂(S) ≤ α · v(S). They show in [4] that if α < n1/3

16 log(n) , then

an exponential dependency on n is still necessary for the size of the representation.
Their is based on the following matroid construction:

Theorem 11.1 (Balcan and Harvey [4]). For every n and ε > 0, there is a sub-

set X ⊆ 2[n] with |X | ≥ 2n
1/3−ε

such that for all Y ⊆ X , there exists a matroid rank
function rY : 2[n] → R such that rY(S) ≥ n1/3 for all S ∈ Y and rY(S) ≤ 8 log(n) for
all S ∈ X \ Y.

If α < n1/3

16 log(n) , any approximation v̂ must be able to distinguish between the case

v(S) ≥ n1/3 and v(S) ≤ 8 log(n) for each S ∈ X . The size of the representation must

therefore be at least 2n
1/3−ε

.
The negative results on the representability of gross substitute functions arise

from studying the subclass of matroid rank functions. A natural question that arises
is: does the subclass of matroid rank functions encapsulate all difficulty in dealing
with gross substitutes.

Ostrovsky and Paes Leme [37] propose to approach this question in the follow-
ing way: defined the weighted matroid associated with matroid M ⊆ 2[n] (repre-
sented my means of its independent sets) and weight vector w ∈ Rn+ as the function
v(S) = maxX⊆S,X∈M

∑
j∈X wj . Weighted matroids are gross substitute functions by

Theorem 3.2. Now, define the class of Matroid Based Valuations as the smallest class
that contains all weighted matroids and is closed under two operations: convolution
(see Section 8) and endowment, which is the operation that given a valuation function
v : 2[n] → R+ and a subset S ⊂ [n], defines ṽ : 2[n]\S → R as ṽ(X) = v(X ∪ S|S).

28

Since the class of gross substitutes is closed under convolution and endowment, the
class of matroid based valuations is a subclass of gross substitutes. It is an open
question whether this inclusion is strict. The collapse of those two classes would offer
an explanation of why the difficulty in dealing with gross substitute valuations seem
to reside in the subclass of matroid rank function.

Another way to approach this question is via the notion of approximation: are
there simple (or simpler) families of valuation functions that provide good approxima-
tions to gross substitute valuations ? Recall that a valuation function v̂ is said to be
an α-approximation for v if v(S) ≤ v̂(S) ≤ α · v(S) for all S ⊆ [n]. It is convenient at
this point to restrict our attention to non-negative valued valuations, i.e., valuations
in V+ = {v : 2[n] → R+}. Given two classes of valuation functions V1, V2 ⊆ V+, we
say that V2 is α-approximated by V1 if for all v ∈ V2, there exists v̂ ∈ V1 such that v̂
is an α-approximation of v. Typically, V1 ⊆ V2 or at least, is in some sense ’simpler’
then V2. In that framework we can make the first question in this paragraph precise:
what is the smallest α such that weighted matroids are an α-approximation to the
class of gross substitute functions.

More broadly one could ask if there exist simple and natural classes of valuations
that α-approximate the class of gross substitutes for small 6 values of α. The class of
endowed assignment valuations proposed by Hatfield and Milgrom [1] (and discussed
in Section 2) captures most practical examples of gross substitute valuations, but was
recently shown by Paes Leme and Ostrovsky [37] to be a strict subclass. A natural
question to ask if endowed assignment valuations provides a good approximation to
the class of gross substitutes.

One can also ask the same question in the opposite direction, how well do gross
substitute valuations approximate more complex class of substitutes such as sub-
modular and subadditive functions ? The approximability between other classes of
valuations has been extensively studied [9, 17, 14, 3], yet very little is known about
gross substitutes.

11.2. Algorithms for other classes of valuation functions. The various
positive algorithmic results described in this survey provide encouragement to look
at other valuation classes, in particular, wider valuation classes that also express the
idea of substitutability (such as submodular, subadditive and fractionally subadditive
valuations [29]) and try to give algorithmic definitions for such classes, in the spirit
of Theorems 3.2 and 3.4. The following paragraph hints that this is not be an easy
task beyond gross substitutes.

For submodular valuations, it is known that both the greedy algorithm (Algorithm
2) and local search (Algorithm 3) can have arbitrarily bad performance for the demand
oracle problem. Consider the following example: consider n items, among which nr
are red and nb are blue. Now, given a set S ⊆ [n], let Sr and Sb be the red and blue
items in the set respectively. The following valuation function is submodular (but not
gross substitutes):

v(S) = min{nb · |Sr|+ nr · |Sb|, nr · nb}

Let nr � nb and consider prices pi = 0 for the red items and pi = nr − nb − ε for
the blue items for some small ε > 0. The greedy demand oracle chooses the set of

6Notice that this it not prevented by the result of Balcan and Harvey (Theorem 11.1) since the
simpler class of valuations might itself require the representation size to grow exponentially in n.

29

all blue items which provide total utility of nb(nb + ε), while the demanded set under
those prices is the set of all red items, which provides utility nb · nr. For ε → 0,
the ratio between the utility chosen by the greedy algorithm and then optimal utility
is nr/nb which can be made as large as we want. The same example shows that
local search can be equally as bad, since the set of all blue items is a local maximum
with respect to the neighborhood defined in Algorithm 3. The situation is more
severe: Feige, Immorlica, Mirrokni and Nazerzadeh [15] argue that no polynomial
time algorithm can provide a constant factor approximation to the demand oracle
problem for submodular functions (via a reduction to uniform set cover problem).

In the previous paragraph we argued that no polynomial time approximation al-
gorithm is possible for the problem of finding a set of items maximizing v(S)− p(S)
for a generic submodular function v. Lehmann, Lehmann and Nisan [29] look at the
problem of finding a set S maximizing v(S) + p([n] \ S) which is equivalent to the
demand oracle problem from the perspective of exact algorithms. From the perspec-
tive of approximation, however, this is a completely different problem. They show
that the greedy algorithm is a 2-approximation. In other words, they show that if
S is the output of the greedy algorithm and S∗ is a set in the demand set, then
v(S) + p([n] \ S) ≥ 1

2 [v(S∗) + p([n] \ S∗)].

This suggests another direction in which one may hope to generalize Theorems
3.2 and 3.4 beyond gross substitutes: given an algorithm to compute the demand
oracle, characterize the class of valuations for which those heuristics are exact or
provide a good approximation to a suitable objective. For example, what is the class
of valuations for which the procedure in [29] is a 2-approximation to the problem of
maximizing v(S) + p([n] \ S) ? Given a more powerful version of the local search
procedure, what is the class of valuations for which it exactly computed demands ?

Acknowledgments. The author thanks Noam Nisan and Shahar Dobzinski for
the initial discussions that led to this survey. He is also in debt with Moshe Babaioff
and Oren Ben-Zwi for many detailed comments and suggestions to improve this
manuscript. Thanks to Oren for providing a fix to the proof of Theorem 3.4 in an
earlier version of this manuscript. The author also thanks Michael Ostrovsky, Shahar
Dobzinski, Vahab Mirrokni, Brendan Lucier and Tim Roughgarden for suggestions
and conversations which helped me clarified some of the points in this survey. Thanks
to Shahar for suggesting some of the open problems in the end of this survey.

REFERENCES

[1] J. W. H. as matroid rank functions, gross substitutes. atfield, and P. R. Milgrom. Matching
with Contracts. American Economic Review, 95(4):913–935, September 2005.

[2] L. Ausubel and P. Milgrom. Ascending auctions with package bidding. Frontiers of Theoretical
Economics, 1(1), 2002.

[3] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Roughgarden. Sketching
valuation functions. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1025–1035. SIAM, 2012.

[4] M.-F. Balcan and N. J. A. Harvey. Learning submodular functions. In ECML/PKDD (2),
pages 846–849, 2012.

[5] D. P. Bertsekas. The auction algorithm: a distributed relaxation method for the assignment
problem. Ann. Oper. Res., 14(1-4):105–123, June 1988.

[6] S. Bikhchandani and J. W. Mamer. Competitive equilibrium in an exchange economy with
indivisibilities. Journal of Economic Theory, 74(2):385–413, June 1997.

[7] M. Bing, D. J. Lehmann, and P. Milgrom. Presentation and structure of substitutes valuations.
In ACM Conference on Electronic Commerce, pages 238–239, 2004.

30

[8] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Journal of Political Economy,
94(4):863–72, August 1986.

[9] S. Dobzinski. Two randomized mechanisms for combinatorial auctions. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 89–
103. Springer, 2007.

[10] A. Dress and W. Terhalle. Rewarding maps: On greedy optimization of set functions. Advances
in Applied Mathematics, 16(4):464 – 483, 1995.

[11] A. Dress and W. Terhalle. Well-layered mapsa class of greedily optimizable set functions.
Applied Mathematics Letters, 8(5):77 – 80, 1995.

[12] A. W. Dress and W. Wenzel. Valuated matroids: a new look at the greedy algorithm. Applied
Mathematics Letters, 3(2):33 – 35, 1990.

[13] A. W. Dress and W. Wenzel. Valuated matroids. Advances in Mathematics, 93(2):214–250,
1992.

[14] U. Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009.

[15] U. Feige, N. Immorlica, V. S. Mirrokni, and H. Nazerzadeh. Pass approximation: A framework
for analyzing and designing heuristics. Algorithmica, 66(2):450–478, 2013.

[16] S. Fujishige and Z. Yang. A note on kelso and crawford’s gross substitutes condition. Math.
Oper. Res., 28(3):463–469, July 2003.

[17] M. X. Goemans, N. J. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions
everywhere. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 535–544. Society for Industrial and Applied Mathematics, 2009.

[18] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM (JACM), 36(4):873–886, 1989.

[19] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Economic
Theory, 87(1):95–124, July 1999.

[20] F. Gul and E. Stacchetti. The english auction with differentiated commodities. Journal of
Economic Theory, 92(1):66–95, May 2000.

[21] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[22] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete mathematics,
23(3):309–311, 1978.

[23] J. Kelso, Alexander S and V. P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, November 1982.

[24] M. Klein. A primal method for minimal cost flows with applications to the assignment and
transportation problems. Management Science, 14(3):205–220, 1967.

[25] D. E. Knuth. The asymptotic number of geometries. Journal of Combinatorial Theory, Series
A, 16(3):398 – 400, 1974.

[26] B. Korte, L. Lovász, and R. Schrader. Greedoids. Algorithms and Combinatorics. Springer-
Verlag, 1991.

[27] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):83–97, March 1955.

[28] E. Lawler. Combinatorial optimization: networks and matroids. Dover Books on Mathematics
Series. Dover Publications, Incorporated, 1976.

[29] B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[30] N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics of
Operations Research, 4(4):414–424, 1979.

[31] K. Murota. Convexity and steinitz’s exchange property. Advances in Mathematics, 124(2):272
– 311, 1996.

[32] K. Murota. Valuated matroid intersection i: Optimality criteria. SIAM J. Discrete Math.,
9(4):545–561, 1996.

[33] K. Murota. Valuated matroid intersection ii: Algorithms. SIAM J. Discrete Math., 9(4):562–
576, 1996.

[34] K. Murota. Matrices and matroids for systems analysis, volume 20. Springer, 2000.
[35] K. Murota and A. Shioura. M-convex function on generalized polymatroid. Mathematics of

Operations Research, 24(1):pp. 95–105, 1999.
[36] N. Nisan and I. Segal. The communication requirements of efficient allocations and supporting

prices. J. Economic Theory, 129(1):192–224, 2006.
[37] M. Ostrovsky and R. P. Leme. Gross substitutes and endowed assignment valuations. Theo-

retical Economics, 2014.
[38] J. Oxley. Matroid theory. Oxford Graduate Texts in Mathematics Series. Oxford University

31

Press, Incorporated, 1992.
[39] H. Reijnierse, A. v. Gellekom, and J. A. M. Potters. Verifying gross substitutability. Economic

Theory, 20(4):pp. 767–776, 2002.
[40] A. E. Roth. Stability and polarization of interests in job matching. Econometrica, 52(1):47–57,

1984.
[41] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Number v. 1 in Algo-

rithms and Combinatorics. Springer, 2003.
[42] L. Shapley. Complements and Substitutes in the Optimal Assignment Problem. ASTIA docu-

ment. Rand Corporation, 1958.
[43] N. Sun and Z. Yang. Equilibria and indivisibilities: gross substitutes and complements. Econo-

metrica, 74(5):1385–1402, 2006.
[44] N. Sun and Z. Yang. A double-track adjustment process for discrete markets with substitutes

and complements. Econometrica, 77(3):933–952, 2009.
[45] L. Walras. Elements of Pure Economics: Or the Theory of Social Wealth. Elements of Pure

Economics, Or the Theory of Social Wealth. Taylor & Francis, 2003.
[46] U. Zimmermann. Negative circuits for flows and submodular flows. Discrete applied mathe-

matics, 36(2):179–189, 1992.

32

