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ABSTRACT
Internet display advertising industry follows two main busi-
ness models. One model is based on direct deals between
publishers and advertisers where they sign legal contracts
containing terms of fulfillment for a future inventory. The
second model is a spot market based on auctioning page
views in real-time on advertising exchange (AdX) platforms
such as DoubleClick’s Ad Exchange, RightMedia, or App-
Nexus. These exchanges play the role of intermediaries who
sell items (e.g. page-views) on behalf of a seller (e.g. a pub-
lisher) to buyers (e.g., advertisers) on the opposite side of
the market. The computational and economics issues aris-
ing in this second model have been extensively investigated
in recent times.

In this work, we consider a third emerging model called
reservation exchange market. A reservation exchange is a
two-sided market between buyer orders for blocks of adver-
tiser’ impressions and seller orders for blocks of publisher’
page views. The goal is to match seller orders to buyer or-
ders while providing the right incentives to both sides. In
this work we first describe the important features of mech-
anisms for efficient reservation exchange markets. We then
address the algorithmic problems of designing revenue shar-
ing schemes to provide a fair division between sellers of the
revenue collected from buyers.

A major conceptual contribution of this work is in show-
ing that even though both clinching ascending auctions and
VCG mechanisms achieve the same outcome from a buyer
perspective, however, from the perspective of revenue shar-
ing among sellers, clinching ascending auctions are much
more informative than VCG auctions.

1. INTRODUCTION
∗A preliminary version of this work was presented at the
11th Ad Auctions Workshop, Portland, June 2015.
†Part of the work was done while visiting Google Research,
NY. Partially supported by Google Focused award ”Algo-
rithms for Large-scale Data analysis”, ERC StG project
PAAl no. 259515, EU project ”Multiplex” no. 317532.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The universe of internet advertisement is divided in two
big worlds: search ads and display ads. At first glance, they
look very similar: both sell impressions using variants of the
second price auction with reserves. A closer look, however,
reveals that they are very different: in search ads, the plat-
form (Google or Bing, for example) is both the auctioneer
and the seller, i.e., it sells inventory in their own proper-
ties. This makes it a one-sided market design problem, or
in other words, the designer needs to reason only about the
incentives of the buyers. In display ads, the platform is auc-
tioning inventory not owned by them, turning it into a two-
sided market design problem, where incentives for buyers
(advertisers) and seller (publishers, such as websites, blogs
and news portals) need to be balanced.

Designing practical markets for display ads is challenging,
since the theory of market design is much more developed for
one-sided markets (there are tools like VCG, Myerson’s op-
timal auction, ...) while for two-sided markets, what classic
auction theory offers are mainly impossibility results, such
as the Myerson-Satterthwaite Impossibility Theorem [?].

One other complicating factor in the display ads is that
while we are used to think of internet advertisement in the
form of auctions, auctions are only the tip of the iceberg.
The most premium inventory is sold via the reservations
market (also called direct deals or guaranteed contracts. In
this method, a publisher and an advertiser make a deal to
allocate a certain number of impressions over a certain pe-
riod, for a pre-specified price per impression. This deal is
made offline in advance for a future inventory. Direct deals
are known to suffer from inefficiencies for two reasons: first
is the manual nature of formation of these contracts which
allows a publisher to sign deals with a small number of ad-
vertisers, thus creating allocation inefficiencies. The second
reason is the manual negotiation between buyers and pub-
lishers which incurs a huge cost and lowers the overall effi-
ciency.

Auctions, on the other hand, are fully automated and
don’t suffer from any of those inefficiencies. On the other
hand, they can’t guarantee to buyers and sellers the cer-
tainty that reservations can. For example, a brand launch-
ing a large campaign to advertise a new product certainly
benefits from the certainty (both in terms of cost and volume
of impressions) provided by reservation contracts.

The idea of automated reservation market is to overcome
the shortcomings of both auctions (real-time spot market)
and traditional reservations (offline negotiation). Such mar-
ket would allow sellers and buyers to transact for a bulk in-



ventory in advance. This is inspired by a number of recent
two-sided markets for online advertising, e.g., an exchange
for future contracts1. In particular, we study a two-sided
market, which we call a reservation market, where publish-
ers can post offers for blocks of ad slots characterized by
parameters like supply level, reserve price, and their prefer-
ence for a set of advertisers. Advertisers post requests for
ad slots defined by parameters like valuation, demand, and
targeting constraints specifying where and when they want
to show their ads. The role of the reservation mechanism
is to match the seller and buyer orders that attains some
economic objectives.

Note that, unlike ad exchange markets that offers impres-
sions available on the spot, the reservation market offers
guaranteed deals for an inventory available in the future.
Moreover, the reservation market brings together multiple
publishers and advertisers with the goal of reducing the in-
termediation costs and the underlying inefficiencies of one-
to-one deals, also by selling bundles of inventories from dif-
ferent publishers.

In this work, we start the investigation of the economics
and algorithmic principles that are central to these reserva-
tion markets. The major questions we address in this work
are: What features and incentive properties form the basis
of a successful reservation market? What are the economic
objectives of a reservation market? What are the revenue
sharing policies that we can employ? What are the algorith-
mic problems we need to address in the design of reservation
mechanisms?

1.1 Our contribution
Our main contribution is to propose a formal model of

reservation exchange market and discuss what are desirable
properties (referred to as axioms) for this market. Secondly,
we propose two specific mechanisms that help us understand
the extent to which some of the aforementioned axioms can
be simultaneously achieved. We also provide several algo-
rithmic results for the two mechanisms that we study.

Axioms for a reservation exchange market.
In Section ??, we provide a simple and clean abstraction of

reservation exchange markets for display ads as a two-sided
matching market with buyer orders on one side and seller
orders on the other side and in Section ?? we identify a list
of axioms that we wish any mechanism for these markets to
approximately satisfy.

The first axiom for the reservation mechanism that we
discuss is the efficiency of the market, i.e., the social welfare
of all agents of the market. The agents of the market are
sellers and buyers, both with quasi-linear utilities. Buyers
aim at maximizing their utility, i.e., the total value of the
inventory received minus price. Sellers aim at maximizing
revenue minus reservation price. The mechanism decides
on the allocation to buyer orders of the inventory supplied
from each seller, a payment to be charged to each buyer and
a distribution of the revenue among sellers.

Individual rationality (IR) requires that participating in
the mechanism is beneficial to all agents. Incentive compat-
ibility (IC) requires that truthfully reporting one’s prefer-
ences to the mechanism is the best strategy for each agent,
independently from what the other agents report.

1http://www.massexchange.com/

Budget Balance (BB) states the payments of the adver-
tisers must entirely and exclusively be transferred to the
publishers, i.e., the buyers and the sellers are allowed to
trade without leaving to the mechanism any share of the pay-
ments, and without the mechanism adding money into the
market. This axiom might appear strange at first glance, but
it reflects a business practice common to most exchanges,
which is of the exchange to get a fixed cut (typically called
revenue sharing margin) of the seller’s revenue. The reason-
ing behind this rule is that sellers have the option to send
their inventory to different exchanges and keeping the rev-
enue sharing margin fixed helps the exchange to be perceived
as fair and hence attract more seller’s inventory. Since fixed
margins are an industrial standard in the ads world, any
practical mechanism must implement some of that. Fixed
margins are equivalent to budget-balance applied to bids
rescaled by the revenue sharing margin up to rescaling bids.

An ideal goal in a reservation exchange is to design IR,
IC, BB mechanisms that maximize the social welfare of all
agents in the market. Unfortunately, Myerson and Satterth-
waite [?] proved impossibility for an IR, IC, and BB mech-
anism that maximizes social welfare in such a market. The
direction we pursue in this work is to ensure full efficiency
and incentive compatibility for buyers as the most desirable
goal for advertiser. This can be achieved for one-side mar-
kets by the family of Vickrey-Clarke-Groves (VCG) mecha-
nisms [?, ?]. As extensively discussed in this work, the main
problem with the vanilla VCG allocation is that it does not
offer any good incentives to sellers, e.g., VCG can match
fungible inventories from different sellers to buyers that of-
fer very different payments thus producing the feeling that
revenue is unfairly distributed among sellers.

An alternative to enforcing incentive compatibility for sell-
ers is to design a mechanism that leads to a fair distribution
of mechanism’ revenue among sellers. Envy-free allocations
[?] and other notions of market equilibria have often been
considered in markets that cannot achieve full efficiency with
truthful allocations. This leads to our third axiom as fol-
lows: sellers should not envy each other with respect to the
revenue that is received from the mechanism.

Most of the first part of the paper will be devoted to the
discussion of which definition of envy-freeness among sell-
ers is meaningful for reservation exchange markets. Our
conclusion is that such a definition should crucially rely on
the buyer-seller transactions that can arise in an efficient
allocation, while it should disregard revenue that can only
be obtained from allocations with suboptimal social welfare.
With this aim, when introducing our notion of envy-freeness
between sellers, we define the concept of clinching graph as
the collection of buyer-seller transactions that can arise in
a VCG allocation. We conveniently define and compute the
clinching graph by resorting to the implementation of VCG
through an ascending clinching auction.

A major insight of this paper is that while the usual
description of VCG payments as externalities imposed by
agents on others offers little clue on how to split the proceeds
of the auction among the sellers, the alternative description
of VCG as an ascending auction (Ausubel’s clinching frame-
work [?]) provides additional structure obtained from the
execution of the auction that can be exploited to design
revenue sharing schemes. The clinching auction returns not
only bundle prices, but the order in which each item was sold
and the price at which the sale occurred. In an ideal case,



whenever a clinch happens, if the clinching auction points to
a unique item to be clinched, then there is a unique way to
split the revenue among the sellers (and in this case clinching
auctions capture the full information in how to split the rev-
enue). However, sometimes, when a clinch happens, there
are multiple items that can be used for that clinch. This is
precisely the case when the clinching auction, even though
it provides more information than VCG, it doesn’t lead to a
unique revenue sharing scheme, and we rely on a notion of
envy-freeness for the revenue sharing scheme.

Finally, we discuss further desirable properties of reserva-
tion markets as additional axioms, and study our proposed
mechanisms for their satisfaction of these axioms. These ax-
ioms are stability properties that prevent the market to be
manipulated from buyers or sellers. We define the concept
of buyer monotonicity (BM) as the property that the rev-
enue of all sellers does not decrease when new buyer orders
are presented. A second property called seller monotonic-
ity (SM) states that the increase of the reservation price of
a seller is not responsible of the decrease of the revenue of
another seller.

Algorithmic results.
We restrict our attention to buyer incentive-compatible ef-

ficient mechanisms based on VCG allocations. For all these
mechanisms truth-telling is a dominant strategy for buyers.
The major issue we face is to complement the VCG mech-
anism with a suitable envy-free revenue sharing scheme be-
tween sellers. Our first result is actually a negative result:

• There exists no efficient revenue sharing scheme that
is both envy-free and budget balance. We actually
demonstrate that any envy-free revenue sharing scheme
cannot distribute more than a

√
3− 1 + δ share of the

total revenue, for any δ > 0.

Given the impossibility result above, we investigate the
possibility of finding good trade-offs between budget balance
or envy freeness. Relaxing one of these two constraints imply
that either the mechanism is able to distribute a guaranteed
share of the total revenue or that any seller has only limited
envy of any other seller. With this goal in mind, we propose
two revenue sharing schemes: i) a revenue sharing by the
clinching auction (CA), and ii) a revenue sharing by the
eating mechanism (EM).

For the CA revenue sharing scheme, we prove the following
desirable properties:

• CA is budget balance.

• CA is 1/2-envy free and this bound is tight.

• CA is budget monotone and seller monotone.

Finally, for the EM revenue sharing scheme, we prove that
following three results:

• EM is envy-free.

• EM is at most 11+ε
12+ε

budget balance, for any ε > 0.

• EM is at least e−1
e

-budget balance.

1.2 Related work

Double Auctions.
Double auctions are special cases of two-sided markets

with unit-supply buyers and sellers. Myerson and Satterth-
waite [?] proved that it is impossible to obtain an IR,
Bayesian IC2, and weak BB 3 mechanism to maximize so-
cial welfare in double auctions. Since then, much of the
literature has focused on trading off social welfare for buy-
ers and sellers, incentive compatibility and budget balance
for double auctions [?, ?, ?, ?, ?]. The seminal work on dou-
ble auctions [?] shows that efficiency for both buyers and
sellers can actually be achieved asymptotically in large mar-
kets. In the context of one-shot auctions, optimal auctions
for two-sided settings has been studied by [?], following the
Nobel-prize winning work of [?]. The problem of finding
the right trade-offs between social welfare, IC and BB is
largely open for two-sided markets that model reservation
exchanges. In this work we investigate two-sided markets
that achieve IC or buyers and envy-freeness for sellers. This
follows a line of work that looks at envy-freeness and other
market equilibria if social welfare cannot be optimized truth-
fully [?, ?, ?]. Recently, this literature has also been adopted
to design the optimal revenue sharing double auctions in the
context of advertising exchanges [?]. In this paper, we focus
on two-sided markets where multiple buyers are allocated
to multiple sellers and the allocation and pricing are done
differently. Other than online advertising systems, optimal
two-sided markets can be applied to online and offline retail-
ers and e-commerce websites like Amazon and Ebay. A very
recent paper by [?] studies EBay’s double auction problem,
but their setting is different from this paper as they consider
one buyer and multiple sellers, and explore approximately
optimal pricing schemes for this setting.

Clinching Ascending Auctions.
One fundamental component of this work is the use of

the structure that can be obtained from the execution of
Ausubel’s clinching auction [?] in designing revenue sharing
schemes for the sellers. The clinching auction has been very
successful in a variety of scenarios: designing auctions with
budget constraints [?, ?, ?, ?], designing online auctions [?],
extracting revenue in settings with budgets [?, ?]. The cur-
rent paper adds to this line of work by showcasing another
application of the clinching framework.

Cooperative games.
Cooperative game theory may provide insights for model-

ing the fair sharing of revenue in the ad reservation exchange
market. Shapley value [?] is a widely adopted notion of fair
division between agents of the value of a game. It is how-
ever hard to extend this concept to our model since a crucial
axiom of Shapley value (summability) does not hold in our
case. Similar difficulties can also be found while trying to
design a revenue sharing scheme that results in an attribu-
tion that lies in the core of a game [?]. On the positive side,
we mention that the revenue sharing scheme by the clinch-
ing auction we present resembles Shapley values since it is
defined as the expected revenue obtained over all possible
seller permutations.

2Bayesian incentive compatibility is a less restrictive form
of incentive compatibility
3Weak budget balance allows the mechanism to retain a
share of the payments while not subsidizing the market.



Market Equilibria.
Several notions of equilibrium in markets have been stud-

ied. In a Walrasian equilibrium, we have item prices such
that every agent receives a bundle of items that maximizes
her utility, the market clears, and the corresponding out-
come is efficient. However, except from very special cases
(e.g. unit demand buyers), it can’t be converted to a mecha-
nism that is incentive-compatible for the buyer [?, ?]. Envy-
freeness for buyers is also a concept widely used to charac-
terize the stability of allocations. We do not survey here the
extensive literature on this topic. However, we notice that
we instead adopt the notion of envy-freeness to characterize
fair revenue sharing schemes between sellers.

Reservation-based Internet advertising has also previously
considered with more optimization-related questions than
mechanism design questions. Examples of this line of work
that is quite unrelated to the scope of this paper can be
found in [?, ?, ?]. Markets that combine characteristics of
the spot market and of direct deals between publishers and
sellers have been also considered in [?] with the goal of
maximizing the revenue of one single publisher.

2. PRELIMINARIES
We consider a two-sided market, referred to as a reserva-

tion exchange market, consisting of a set B of buyers and a
set S of sellers. Each seller si ∈ S holds a supply of `i units
of an indivisible good and has a reserve price ρi for each
unit of those goods. Each buyer is interested in purchasing
at most di units and has a value vi per unit. The structure
of the matching market is captured by a bipartite graph
G = (B ∪ S, F ) which indicates which buyer is interested in
buying goods from which seller.

For example, in the case of internet advertisement, each
buyer bj ∈ B corresponds to an advertiser and a seller si ∈ S
corresponds to a publisher. An edge (bj , si) ∈ F indicates
that buyer bj is interested in purchasing inventory from the
publisher si’s website. We define Bi = {bj ∈ B; (bj , si) ∈ F}
as the set of buyers who target seller si inventory. Similarly,
we define Sj = {si ∈ S; (bj , si) ∈ F} as the set of sellers
that are targeted by buyer bj .

We are interested in designing reservation exchange mech-
anisms (or simply reservation mechanisms) which associate
for any given matching market described by (B,S, v, d, `, ρ)
an outcome composed of:

• an allocation xi[j] ∈ Z, indicating how many goods
from seller si are sold to buyer bj , respecting demands
aj :=

P
i xi[j] ≤ dj and supply ci :=

P
j xi[j] ≤ `i.

• a total amount Pj paid by each buyer bj , such that the
payment per unit doesn’t exceed buyer j’s value per
unit: Pj ≤ aj · vj

• a revenue sharing scheme which allocates for each buyer
bj and seller si, a portion Ri[j] of the buyer’s payment
Pj to seller si, such that

P
iRi[j] ≤ Pj . We define

Ri :=
P
j Ri[j] to be the total revenue obtained by

seller i.

An outcome satisfying the properties above is said to be
a feasible outcome. Given a feasible outcome, the utility of
involved agents are as follows:

• buyers have quasi-linear utilities, i.e, uj = vj · aj −Pj .

• sellers have the revenue minus the reservation price
Ri − ρi · ci as their utility.

In the next section, we discuss a set of desirable properties
for a reservation mechanism and discuss which subsets of
those properties can be simultaneously satisfied.

3. AXIOMS FOR RESERVATION EXCHANGE
MARKETS

In this section, we develop an axiomatic approach to reser-
vation markets. First, we define a set of desirable prop-
erties, referred to axioms, for a well-designed market. As
it is the case with axiomatic approaches, some seemingly
innocuous axioms might generate impossibility results and
some seemingly powerful axioms might not prevent the pit-
falls we intended. Here, we define a family of axioms (many
with different variations) and discuss, using examples, their
strengths and weaknesses.

3.1 Fundamental Axioms: efficiency and budget-
balance

We establish as our first and most important goal the
maximization of market efficiency, which is the sum of the
utilities of all agents involved:

• Efficiency [Eff]: The implemented outcome maxi-
mizes SW (B ∪ S) =

P
j∈B vj · aj +

P
i∈S ρi · (`i − ci)

among all feasible outcomes, assuming the seller de-
rives utility ρi for unsold items.

In order to simplify notation, for each seller that has a
reserve price ρi > 0 we add a proxy buyer j(i) with demand
dj(i) = `i and value vj(i) = ρi. Let also j(i) be the endpoint
of a single edge connecting it to seller i. Notice that there is a
social-welfare-preserving one-to-one map between outcomes
for sellers with reserve prices and sellers without reserves but
with proxy buyers. This reduction allows us to ignore from
this point on the reserve prices ρi and focus on maximizingP
i vj · aj as the [Eff] goal.
A second goal of the mechanism is to distribute the rev-

enue between sellers. A budget balance mechanism should
distribute the entire revenue collected from the buyers to the
sellers. A β-budget balance mechanism should distribute at
least a β-fraction of the revenue.

• β-Budget Balance [β-BB]: The implemented out-
come is β-budget balance for a constant β ∈ [0, 1] ifP
i∈S Ri ≥ β

P
j∈B Pj . We say that the reservation

mechanism is exact budget balance if β = 1.

3.2 Stability properties
A second set of properties describes the stability of the

allocation and resilience to manipulation via adding or re-
moving buyers or sellers:

• Buyer Monotonicity [BM]: If a new buyer order
bj is added, the revenue of all sellers in Sj does not
decrease.

• Seller monotonicity [SM]: If a seller increases his
reserve price, the revenue of all other sellers does not
decrease.



3.3 Incentive compatibility
We next define a set of desirable incentives properties for

buyers and sellers.

• [B-IC] Buyer incentive compatibility: Buyers max-
imize their utility by reporting their true valuations to
the mechanism.

• [S-IC] Seller incentive compatibility: Sellers
maximize their utility by declaring true reserve prices
and supply levels.

Unfortunately, [B-IC] and [S-IC] cannot be simultaneously
achieved in a two-sided market [?, ?] if not at the expense
of efficiency. Here, we choose to relax Seller incentive com-
patibility and instead, enforce a fairness constraint among
sellers while keeping buyer incentive compatibility.

If we enforce [Eff] and [B-IC], the only mechanism avail-
able to decide on the allocation and buyer payments is the
VCG mechanism. VCG, however, treats all the sellers as
one and therefore doesn’t prescribe how the revenue of the
auctions should be distributed among the sellers. The cen-
tral issue in the design of reservation exchange mechanisms
is how to distribute the revenue from the VCG auction in a
manner that is fair to the sellers. As we will see next, defin-
ing a precise notion of fairness that matches our intuition
is a quite non-trivial task. First, we show how the most
natural definitions fail to capture important situations.

3.4 Seller Fairness and Envy-Freeness
We start by identifying a set of properties that we believe

a fair revenue sharing scheme should satisfy. The challenge
here is in identifying, when a buyer gets some item at price
p, if a seller can stake a claim on this revenue or not. Firstly,
a seller si can claim revenue only from buyers that are inter-
ested in the inventory owned by seller si, i.e., Ri[j] = 0 for
j /∈ Bi. Also, if a certain buyer bj never receives goods from
seller si under any efficient allocation, seller si shouldn’t
be able to claim stake on the revenue bj . This is so be-
cause even if this seller drops this connection to the buyer,
it won’t change the set of efficient outcomes. Moreover, the
seller may end up getting a lower revenue because of the
reduced competition after dropping such a connection.

In order to capture the above notions, we define for each
seller si, the set Ai ⊆ Bi as the set of buyers that are allo-
cated at least one good from si in some efficient allocation.
We are now able to define the concept of envy-free revenue
sharing: roughly speaking, we say that a revenue sharing
scheme is envy-free if each seller si extracts from Ai more
revenue then any other seller with at most the same sup-
ply and proportionally more revenue than any dseller with
higher supply. More specifically, this concept is defined as
follows:

• Envy-free Revenue Sharing [ERS]: ∀si, si′ ,P
j∈Ai Ri[j] ≥ min(1,

`si
`s
i′

) ·
P
j∈Ai Ri′ [j].

If all sellers have the same supply, this boils down toP
j∈Ai Ri[j] ≥

P
j∈Ai Ri′ [j]. We note that if one is able to

design an envy-free mechanism for sellers with unit-supply,
this automatically extends to sellers with non-unit supply
by the following reduction: transform each seller of supply
`i in `i unit supply sellers. An envy free allocation in the

Figure 1: The two sellers receive different rev-
enue.

transformed setting naturally translates to an envy-free allo-
cation in the original setting. For this reason we will assume
for the remainder of the paper that sellers are unit supply.

However, as shown in the following example, the above
notion of envy-freeness doesn’t fully capture the notion of a
fair allocation among the sellers:

Example. Consider two buyers with valuation v1 = 2, v2 =
1, and demands d1 = 2, d2 = 1. There are two unit supply
sellers s1, s2 with preference constraints shown in Figure ??.
For any mechanism satisfying [Eff], [B-IC] and [ERS], the
allocation and payments charged to the buyers must be the
one of the VCG mechanism. So, the mechanism sells both
items to buyer b1 at total price 1.

Since A1 = A2 = {b1}, ERS imposes to share the rev-
enue equally between s1 and s2. This way to partition of
the revenue can be hardly called fair, since the 1 dollar in
revenue is caused by the competition with buyer b2 that is
brought to the market by seller s2. So a natural intuition is
that a ‘fair’ scheme should attribute the 1 dollar in revenue
to seller 2.

The above example implies the need to refine the envy-
freeness property to incorporate some notion of which buyers
are responsible for putting the price pressure. To get a handle
on such a notion, we consider ascending auctions to refine
our envy-freeness property.

3.5 Fairness via ascending auction
The traditional definition of the VCG mechanism is that

it allocates according to an efficient allocation and charges
each agent according to the externality it imposes on other
agents. One problem with this way of defining VCG is that
it returns a bundle of items to each agent and a total price
but does not specify how much of the payment is attributed
to each item. An alternative way to define VCG is via an
ascending auction [?, ?], in which there is a price clock p
that gradually ascends, and as the price increases items are
allocated to buyers. The total payment of the buyer in such
a case is the sum over the prices of all individual items,
where the price of each item is the value of the price clock
when the buyer acquired the item.

The ascending auction description of VCG returns for
each buyer bj his allocation, say xj ∈ Z+ together with
xj prices p1 ≤ p2 ≤ . . . ≤ pxj corresponding to the value
of the price clock when he acquires each of those items. In
other words, we can describe the outcome of VCG as an as-
cending auction as a set of n buying events, where n =

P
i `i

and each buying event is a pair (bj , p) indicating that one
item was sold to buyer bj at price p. Note that we assume
all items are sold by VCG, which is always the case when
we consider proxy buyers as discussed in Section ??.



Figure 2: Each seller is linked in the clinching
graph to only one buying event.

Let E be the set of buying events that represents the out-
come of the auction. During its execution, the ascending
auction maintains in each step a tentative assignment of
buying events to sellers. This allows us to define a bipartite
graph between sellers and buying events called the clinching
graph. We say that a seller si is connected to buying event
ej if this seller is tentatively allocated to that buying event
in some point of the auction execution. If the auction ex-
ecution is not unique (because of ties, caused for example
by two identical sellers) we consider an edge to be in the
clinching graph if for some execution of the auction its cor-
responding buying event is connected to the corresponding
seller.

We postpone a formal definition of the ascending auction
until Section ??, but we illustrate its execution for the in-
stance in Example ??. The price clock starts at zero, and at
that price the auction is already able to allocate the item in
s1 to buyer b1, since he faces no competition on that item.
This generates a buying event (b1, 0) that is associated with
seller s1. For prices between 0 and 1, both buyers compete
for the remaining item. When the price clock reaches 1,
buyer b2 is no longer interested in the remaining item and
buyer b1 can acquire it at price 1, generating a buying event
(b1, 1), which is associated with seller s2. There are no ties,
so this is the unique execution of the auction, what generates
the clinching graph represented in Figure ??.

Given the clinching graph, we are now able to define a
stronger notion of envy-freeness based on it. We denote
by ri[j] the revenue obtained by seller si from buying event
ej ∈ Ei. Let us denote the revenue of unit supply seller si by
ri =

P
j∈Ei ri[j]. We now state a new version of Envy-free

Revenue Sharing, that we denote by ERSCG, as follows:

• Envy-free Revenue Sharing from Clinching Graph
[ERSCG]: ∀si, si′ ,

P
j∈Ei ri[j] ≥

P
j∈Ei ri′ [j].

According to the definition of clinching graph, we obtain
for the example of Figure ?? that E1 = {e1} and E2 =
{e2}. The revenue sharing scheme that attributes r1[1] = 0,
r1[2] = 0, r2[1] = 0 and r2[2] = 1 is therefore ERSCG. We
conclude that the new definition of envy-freeness is able to
characterize a fair sharing of the revenue between sellers.

We also define an approximate version of the previous
property:

• α-Envy-free Revenue Sharing from Clinching
Graph[α-ERSCG]:
∀si, si′ ,

P
j∈Ei ri[j] ≥ α

P
j∈Ei ri′ [j].

We conclude by observing that the notion of envy-freeness
we introduce can easily be adapted to the original non-unit
supply sellers.

Figure 3: The buyer-seller graph for the counter
example to envy-freeness

Figure 4: The clinching graph for the counter
example to envy-freeness

4. IMPOSSIBILITY OF ENVY-FREENESS
AND BUDGET BALANCE

Before presenting two revenue sharing schemes based on
the definition of clinching graph in Sections ?? and ??, we
show that envy-freeness and budget balance are indeed con-
tradicting objectives for any revenue sharing scheme based
on an efficient allocation.

Theorem 4.1. There does not exist any revenue shar-
ing efficient mechanism for the reservation exchange market
which is BB and α-ERSCG for α ≥

√
3− 1 + δ ≈ 0.732, for

an arbitrary small value δ > 0.

Proof. The proof is based on the following example. We
have four buyers and three unit-supply sellers. Buyer b0 has
demand d0 = 3 and valuation v0 = ε > 0, buyer b1 has
demand d1 = 2 and valuation v1 = 1 and buyers b2 and b3
have demand d2 = d3 = 1 and valuation v2 = v3 = 2. The
buyer-seller graph is shown in Figure ??.

The three buyers receive one item each. The correspond-
ing clinching graph is shown in Figure ??. We have pay-
ments p1 = ε, p2 = 1, p3 = 1.

Denote by xi[j] the share of pj attributed to seller si. If
the revenue sharing scheme is exact budget balance then
we have

P
j∈Ei xi[j] = 1, ∀si ∈ S, and

P
si:ej∈Ei xi[j] =

1,∀ej ∈ E.
Assume in the example x1[1] = x and x3[1] = 1−x. From

exact budget balance we have x3[3] = x, x2[3]+x1[3] = 1−x
and x1[2] + x1[3] = 1− x.

Let us denote by α the maximum ERSCG ratio that can
be achieved. Let us state α-ERSCG of s1 with respect to
s2:

X
ej∈E1

r1[j] ≥ α
X
ej∈E1

r2[j].



We obtain

εx+ (1− x) ≥ α.

Next, we state α-ERSCG of s3 with respect to s1 and s2:X
ej∈E3

r3[j] ≥ α max {
X
ej∈E3

r2[j],
X
ej∈E3

r1[j]}.

Given that the revenue of at least one of s2 and s1 on e3

is at least (1− x)/2, we obtain

(1− x)ε+ x ≥ α1− x
2

.

We therefore conclude that α ≤ min{1−x+εx, 2ε+ 2x
1−x}.

By maximizing α as function of x, and by setting ε arbitrar-
ily small, we obtain α ≤

√
3 − 1 + δ for an arbitrary small

δ > 0.

5. REVENUE SHARING BY THE CLINCH-
ING ASCENDING AUCTION.

The first revenue sharing scheme is based on the alloca-
tions computed by the clinching ascending auction (CA).
We denote by CA this revenue sharing scheme.

A detailed description of the use of the clinching ascending
auction [?, ?] to compute efficient VCG allocations is in
Appendix. We specifically present a version for matching
markets given in [?].

Crucial to the definition of revenue sharing scheme is the
notion of priority order among sellers that is used in the
execution of the CA. Whenever the CA is indifferent about
buying between a set of sellers, it decides in ”favor” of the
seller with lower priority in the precedence order. Intuitively,
the seller of higher priority will enjoy a payment that is at
least as good as the lower priority seller since the price in
the ascending auction is non-decreasing. A priority order
between sellers is simply represented by a permutation π ∈
Π(S) where Π(S) defines the set of all permutations of set
S.

We set rπi [j] = pj if the execution of CA on permutation
π matches ej to si.

Revenue share of seller si from buying event ej is defined as

ri[j] = Eπ∈Π(S)[r
π
i [j]]. (1)

The revenue of seller si is defined as ri =
P
ej∈Ei ri[j].

Since the total revenue of the mechanism REV =
P
j∈E pj

is shared between sellers, we state a first property of the
revenue sharing scheme CA:

Claim 5.1. The revenue sharing scheme CA is BB.

We next prove that the revenue sharing scheme CA is not
exact ERSCG.

Theorem 5.2. The revenue sharing scheme CA is at most
1/2-ERSCG.

Proof. Consider the example of Figure ??.
We have three buyers and three unit supply sellers. The

three buyers are b1 with d1 = 2 and valuation v1 = 1, b2
and b3 with demand d2 = d3 = 1 and valuation v2 = v3 = 2.
Figure ?? shows the preference sets of the buyers that also

Figure 5: The clinching graph for the counter
example to ERSCG

correspond with the edges of the clinching graph. The three
buyers receive one item each. We therefore have buying
events {e1, e2, e3} with payments p1 = 0, p2 = p3 = 1. Let
us compute the revenue shares of s1 and s2. Seller s1 is
matched to e1 on permutations 123, 132, 213, e2 on permu-
tation 312, e3 on permutations 321, 231. Seller s2 is always
matched to e2 or e3. The mechanism is therefore not envy-
free since the revenue from e1 is 0. In particular we observe
that s1 achieves half the revenue of s2 .

We next prove the approximate envy-freeness of revenue
sharing scheme CA. The proof is given in appendix.

Theorem 5.3. The revenue sharing scheme CA is 1/2-
ERSCG.

We conclude with the properties of buyer monotonicity
and seller monotonicity for revenue sharing scheme CA. The
proofs are deferred to the Appendix.

Theorem 5.4. BM and SM hold for revenue sharing scheme
CA.

6. REVENUE SHARING BY THE EATING
MECHANISM.

The eating mechanism is defined as a fractional process in
time on the clinching graph CG = (E∪S,H), H = {(ej , si) :
ej ∈ Ei}. At each time x ∈ [0, 1], the unit supply seller si
”eats” from the the non-exhausted buying event ej ∈ Ei of
highest payment pj . Each seller will eat at most up to a
fraction of 1. A buying event is exhausted when it has been
eaten for 1 unit. The result of the eating mechanism is a
fractional assignment xi[j] ∈ [0, 1] such that

P
j∈Ei xi[j] ≤ 1

for each seller si ∈ S and
P
si:ej∈Ei xi[j] ≤ 1 for each buying

event ej ∈ E.

Revenue share of seller si from buying event ej is defined as

ri[j] = xi[j]× pj . (2)

The total revenue of seller si is also equal to ri =
P
j∈Ei ri[j].

It is easy to observe that the revenue shares by the eating
mechanism can be computed in polynomial time. We first
show that revenue share mechanism EM is envy-free.

Theorem 6.1. The revenue sharing scheme EM is ER-
SCG.



Figure 6: The example for the eating mecha-
nism.

Figure 7: Eating mechanism is not exact budget
balance.

It is not clear that in the EM sharing scheme all sellers
eat up to 1. We show in the following that EM is not exact
budget balance.

Theorem 6.2. For any ε > 0, the revenue sharing scheme
EM is at most 11+ε

12+ε
-BB.

Proof. In the example of Figure ??, buyer b0 has de-
mand d0 = 3 and valuation v1 = 1, buyer b1 has demand
d1 = 2 and v1 = 1 + ε, and finally buyers b2 and b3 have
d2 = d3 = 1 and valuation v2 = v3 = 2. There are three
sellers. The buyer/seller graph is shown in Figure ??.

The corresponding clinching graph is shown in Figure ??.
The three buyers receive one item each. Buying event e1

happens at price 1, buying events e2 and e3 happen at price
1 + ε. It is clear that the three sellers will eat first from e2

and e3 and later from e1. Now the issue is whether seller s2

prefers e3 to e2 or e2 to e3.
If seller s2 prefers e3 to e2, seller s3 eats 1/2 of e3 and 1/2

of e1, seller s2 eats 1/2 of e3 and 1/4 of e2, seller s1 eats
3/4 of e2 and 1/4 of e1. If seller s2 prefers e2 to e3, seller s3

eats 3/4 of e3 and 1/4 of e1, seller e2 eats 1/2 of e2 and 1/4
of e3, seller s1 eats 1/2 of e2 and 1/2 of e1. In both cases
s2 eats up to 3/4 and e1 is eaten up to 3/4. We conclude
that a revenue of 1/4 out of total revenue of 3 + 2× ε is not
distributed between sellers.

The proof of the main theorem of this section is given in
Appendix.

Theorem 6.3. The revenue sharing scheme EM is 1 −
1/e-BB.

7. CONCLUSIONS
The reservation exchange market is an emerging model for

internet advertising that brings together multiple publishers
and advertisers interested in trading inventories of impres-
sions available in the future. In this work, we present the

axioms and the design principles at the basis of mechanisms
for reservation exchange markets. The goal we define for
these markets is the design of mechanisms that are incen-
tive compatible for buyers, envy-free for sellers, efficient and
budget balance. We show that this is possible if one of the
requirements of budget balance or envy-freeness is slightly
relaxed. Our efficient revenue sharing mechanisms are based
on the notion of clinching graph that is a convenient repre-
sentation of the trades of efficient VCG allocations.

We leave several open problems in the context of reserva-
tion exchange markets. First of all, it would be interesting
to close some of the gaps on approximate envy-freeness and
budget balance of the revenue sharing mechanisms we pro-
pose. It is also unknown whether the eating mechanism
holds some of the monotonicity properties we define in this
paper. Moreover, since the clinching graph seems to pro-
vide fundamental insights for designing fair revenue sharing
mechanisms, it would be helpful to derive its structure from
basic properties of VCG mechanisms.

Acknowledgements. We thank Marek Adamczyk for sug-
gesting the analysis of budget balance of the eating mecha-
nism.

APPENDIX
For lack of space, some of the proofs are omitted.

A. CLINCHING ASCENDING AUCTION
In this section, we show how to use the clinching ascend-

ing auction (CA) [?, ?, ?, ?] to compute efficient VCG
allocations.

In CA, we will use a notion of priority order among sellers.
A priority order between sellers is simply represented by a
permutation π ∈ Π(S) where Π(S) defines the set of all
permutations of set S. The ascending auction raises the
price of unsold supply till all items are sold.

The auction makes an extensive use of maximalD-matchings.
A D-matching in the graph G = (B ∪S, F ) is a subgraph of
G where vertices have degree constraints. Given the vector
D of degree constraints, and a graph G = (B∪S, F ), one can
compute a maximal weight D-matching in polynomial time.
We denote such D-matchings simply by matchings. In our
case, the bipartite graph is G = (B ∪ S, F ) has a vector of
degree constraints given by the residual demand for buyers
and by 1 for the unit supply sellers.

The main details of the auction are described by Algo-
rithms ??, ?? and ??.

Throughout the execution of the auction there is always
some current price p (initially zero); a set S of unsold sell-
ers of cardinality n, and current remaining demand dj from
buyer bj . We assume the existence of a maximum matching
of size n in the graph thus guaranteeing that all items will
be sold in the course of the auction.

The auction repeatedly computes a matching of unsold
items, i.e., a maximal matching that assigns at most dj out
of n unsold items to buyer bj . More precisely, given a permu-
tation π, CA repeatedly computes (X,π)-avoid matchings.
These are maximal matchings that try to avoid, if at all
possible, assigning items to buyers in some set X. More-
over, among all such matchings, it is returned the one that
is lexicographically minimum with respect to seller order π.



Algorithm 1 Clinching Auction

1: procedure Clinching Auction(B, d, S, π, {Sj}, {Bi})
Implicitly defined A, V and n — see Equations (??) and
(??).
D(¬{bj}, π) - number of items assigned to agents in A \
{bj} in ({bj}, π)-avoid matching

2: p← 0
3: while (A 6= ∅) do
4: Sell(V )
5: A← A− V
6: repeat
7: if ∃bj |D(¬{bj}, π) < n then Sell(bj , π)
8: end if
9: until n = 0 or ∀i: D(¬{bj}, π) = n)

10: If n > 0, increase p until for some bj ∈ A, p = vj

11: end while
12: end procedure

Algorithm 2 Computing an avoid matching, can be done
via min cost max flow
1: procedure (X,π)-Avoid Matching

Construct interest graph G:

• Active buyers, A, on left, demand of buyer bj ∈ A
= dj

• Sellers S, on the right, supply of seller si ∈ S, li =
1.

• Edge (bj , si) from buyer bj ∈ A to seller si ∈ S iff
si ∈ Sj and bj ∈ Bi.
Return maximum D-matching with minimum num-

ber of items assigned to buyers of X that is lexicograph-
ically maximal on π.

2: end procedure

Algorithm 3 Selling to a set X of Buyers

1: procedure Sell(X,π) Sell to buyers X according to π.
2: repeat
3: Compute Y = (X,π)-Avoid Matching
4: For si of lowest priority such that (bj , si) ∈ Y

and bj ∈ X, sell seller si to buyer bj . Update demand
dj = dj − 1.

5: until D(¬X,π) ≥ n
6: end procedure

The mechanism will sell items only when the (S, π)-avoid
matching will still assign items to buyers of S. Whenever
buyers in X can be matched to different sellers, given the
lexicographically minimum order, the precedence is given to
sellers that have lower priority in π.

The algorithm also keeps a set of active buyers A — those
with current demand greater than zero and valuation vj ≥ p.
Not all active agents are in the same position with respect
to the auction. The auction will distinguish a set of buyers
V with valuation equal to the current price:

A = {1 ≤ j ≤ n|dj > 0}, (3)

V = {1 ≤ j ≤ n|dj > 0, vj = p}. (4)

The algorithm repeatedly tries to sell items at the cur-
rent level of demand for all the buyers. When no items can
be sold the price increases. In algorithm ??, we compute
matchings that obey the following three requirements: i)
maximize the number of sellers that are matched; ii) min-
imize the number of sellers matched to buyers of X; iii)
lexicographically maximal on π. The three requirements are
listed in the order of priority, i.e., firstly maximize number
of matched sellers, secondly minimize number of buyers of X
that are matched, and thirdly, match sellers in lexicograph-
ically maximal order according to π. The last requirement
implies that there exists no other matching satisfying i) and
ii) that matches a seller of higher priority in place of a seller
of lower priority to a buyer of X.

The auction will in fact sell all items. Once a price has
been updated, the auction checks if it must sell items to
value limited buyers. Such buyers will receive no real benefit
from the items (their valuation is equal to their payment),
but this is important so as to increase the utility of the
auctioneer and the profit of the sellers. To check if this
is necessary, the auction computes a (V, π)-avoid matching,
trying to avoid the bidders in V . If this cannot be done, then
items are sold to these V bidders according to the order of π.
After items are sold to value limited bidders, these bidders
effectively disappear and we are only left to consider selling
to active bidders.

The main loop of the mechanism checks whether any items
must be sold to any of the currently active bidders. The auc-
tion sells an item to some buyer, bj , where the total demand
of remaining bidders is such that an item can be assigned
to bj without creating a shortage. This makes use of the
({bj}, π)-avoid matching, if in the ({bj}, π)-avoid matching
some item is matched to bj then bj must be sold that item.
The seller is decided according to the precedence order π. If
no item can be sold the price increases.

B. PROOF OF THEOREM 5.2
Proof. We show that for every two sellers si, si′ , for the

revenues computed of revenue sharing scheme CA, it holds:P
j∈Ei ri[j] ≥ 1/2

P
j∈Ei ri′ [j]. We conclude that revenue

sharing scheme CA is 1/2-ERSCG.
Let us denote by e1, . . . , en the n buying events and by

p1, . . . , pn the corresponding payments. Buying events are
ordered by non-increasing prices p1, . . . , pn. It does not de-
pend on the precedence π between sellers.

We also denote by jπ(i) ∈ Ei the index of the buying
event ejπ(i) sold to seller si in permutation π. We partition
set Π(S) into three sets:

1. Π1(S) = {π ∈ Π(S) : {jπ(i), jπ(i′)} ∈ Ei ∩ Ei′}



2. Π2(S) = {π ∈ Π(S) : jπ(i′) /∈ Ei}

3. Π3(S) = {π ∈ Π(S) : jπ(i′) ∈ Ei, jπ(i) /∈ Ei′}

Lemma B.1. For the permutations of Π1(S), it holds

Eπ∈Π1(S)[r
π
i [jπ(i)]] = Eπ∈Π1(S)[r

π
i′ [j

π(i′)]]

We now consider permutations from Π2(S).

Lemma B.2. For the permutations of Π2(S), it holds

Eπ∈Π2(S):jπ(i′)∈Ei [r
π
i′ [j

π(i′)]] = 0 (5)

We finally consider permutations Π3(S) = {π ∈ Π(S) :
jπ(i′) ∈ Ei, jπ(i) /∈ Ei′}.

Lemma B.3. For the permutations of Π3(S), it holds

Eπ∈Π3(S)[r
π
i [jπ(i)]] ≥ 1/2Eπ∈Π3(S)[r

π
i′ [j

π(i′)]]

From the three above lemmas, it follows:

X
j∈Ei

ri[j] = Eπ∈Π(S)[r
π
i [jπ(i)]]

= Eπ∈Π1(S)[r
π
i [jπ(i)]] + Eπ∈Π2(S)[r

π
i [jπ(i)]]

+ Eπ∈Π3(S)[r
π
i [jπ(i)]]

≥ Eπ∈Π1(S)[r
π
i′ [j

π(i′)]]

+ Eπ∈Π2(S):jπ(i′)∈Ei [r
π
i′ [j

π(i′)]]

+
1

2
Eπ∈Π3(S)[r

π
i′ [j

π(i′)]]

≥ 1

2

X
j∈Ei

ri′ [j],

thus proving the claim.

C. PROOF OF THEOREM 5.4
Revenue share of seller si from buying event ej in the

revenue sharing schemes CA is defined as

ri[j] = Eπ∈Π(S)[r
π
i [j]], (6)

with ri[j] defined as the revenue of seller si on buying
event ej in the execution of CA on permutation π. De-
note by m the number of buyers, i.e., m = |B|. We show
properties BM and SM as a corollary of a general monotone
property of of the CA executed on permutation π when the
valuation of buyer bm is increased from vm = p to vm = p+ε,
for an arbitrary ε > 0. W.l.o.g, assume that bm is the buyer
of higher priority in the execution of the clinching auction,
i.e., whenever the auction has the chance to sell at price p
to more that one buyers, it does it according to a fixed pri-
ority. Denote by dj(p) the residual demand of buyer bj after
the CA has been executed till price p, p included. Denote
by S(p, π) the set of sellers unsold after the CA has been
executed till price p on permutation π. Denote by X ′ the
quantity X when buyer bm has valuation vm = v + ε.

Our revenue monotonicity properties stem from the fol-
lowing general claim:

Claim C.1. For any price p ≥ 0, permutation π and
buyer bj it holds:

i. dj(p) ≤ d′j(p);

ii. S(p, π) ⊆ S′(p, π).

Theorem C.2. BM holds for revenue sharing scheme CA.

Proof. The property states that the revenue of all sellers
does not decrease if a new buyer is added. We can simulate
the addition of a new buyer bm by initially setting vm = 0
and then increasing vm till the exact valuation of the buyer.
From the monotonicity property of Lemma ??, in particular
from S(p, π) ⊆ S′(p, π), we conclude that all sellers will
not be sold at a lower price if a new buyer is inserted. We
therefore conclude with the proof of the theorem.

Similarly, we prove:

Theorem C.3. SM holds for revenue sharing scheme CA.

D. PROOF OF THEOREM 6.3
Proof. Let H be the set of arcs between sellers S and

events E. Let x (t) ∈ [0, 1]H represent process of eating over
time for t ∈ [0, 1]. Let He be arcs adjacent to an eating event

e. Consider function f (x (t)) =
P
e∈E pe ·

“P
a∈He xa (t)

”
.

Events have prices p1 ≥ ... ≥ pn, and suppose there exists a
perfect matching so that OPT = p1 +...+pn (this is without
loss, reasoning for just a maximum matching is the same).

The following Lemma holds.

Lemma D.1. At any time τ ∈ [0, 1] it holds that

d+f (x (t))

dt
(τ) + f (x (τ)) ≥ OPT.

Given the Lemma we have that

d+
`
etf (x (t))

´
dt

(τ) = eτ
d+f (x (t))

dt
(τ)+eτf (x (τ)) ≥ eτOPT.

Let T1 ≤ T2 ≤ ... ≤ Tn be moments in which events where
becoming exhausted; add T0 = 0 and Tn+1 = 1 for simplic-
ity. In the intervals [Ti−1, Ti] the function f is differentiable,
and the derivative of f (x (t)) is equal to its right-side deriva-
tive, so

eTif (x (Ti))− eTi−1f (x (Ti−1))

=

Z Ti

Ti−1

df (x (t))

dt
(τ) dτ ≥

Z Ti

Ti−1

eτ ·OPT dτ

=
“
eTi − eTi−1

”
OPT.

Summing for i from 1 to n+ 1 gives us

e · f (x (1))− f (x (0))

=

n+1X
i=1

eTif (x (Ti))− eTi−1f (x (τi−1))

≥
n+1X
i=1

“
eTi − eTi−1

”
OPT

= (e− 1)OPT.

Given that f (x (0)) = 0 we get f (x (1)) ≥
`
1− 1

e

´
OPT .

Remains to notice that f (x (1)) is our solution.
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