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Abstract

Motivated by pricing applications in online advertising, we study a variant of linear
regression with a discontinuous loss function that we term Myersonian regression.
In this variant, we wish to find a linear function f : Rd → R that well approximates
a set of points (xi, vi) ∈ Rd × [0, 1] in the following sense: we receive a loss of vi
when f(xi) > vi and a loss of vi − f(xi) when f(xi) ≤ vi. This arises naturally
in the economic application of designing a pricing policy for differentiated items
(where the loss is the gap between the performance of our policy and the optimal
Myerson prices).
We show that Myersonian regression is NP-hard to solve exactly and furthermore
that no fully polynomial-time approximation scheme exists for Myersonian regres-
sion conditioned on the Exponential Time Hypothesis being true. In contrast to
this, we demonstrate a polynomial-time approximation scheme for Myersonian re-
gression that obtains an εm additive approximation to the optimal possible revenue
and can be computed in time O(exp(poly(1/ε))poly(m,n)). We show that this
algorithm is stable and generalizes well over distributions of samples.

1 Introduction

In economics, the Myerson price of a distribution is the price that maximizes the revenue when
selling to a buyer whose value is drawn from that distribution. Mathematically, if F is the cdf of the
distribution, then the Myerson price is

p∗ = argmaxp p · (1− F (p))

In many modern applications such as online marketplaces and advertising, the seller doesn’t just set
one price p but must instead price a variety of differentiated products. In these settings, a seller must
design a policy to price items based on their features in order to optimize revenue. Thus, in this paper
we study the contextual learning version of Myersonian pricing. More formally, we get to observe a
training dataset {(xt, vt)}t=1..m representing the bids of a buyer on differentiated products. We will
assume that the bids vt ∈ [0, 1] come from a truthful auction and hence represent the maximum value
a buyer is willing to pay for the product. Each product is represented by a vector of features xt ∈ Rn
normalized such that ‖xt‖2 ≤ 1. The goal of the learner is to design a policy that suggests a price
φ(xt) for each product xt with the goal of maximizing the revenue on the underlying distribution D
from which the pairs (xt, vt) are drawn. In practice, one would train a pricing policy on historical
bids (training) and apply this policy on future products (testing).

Mathematically, we want to solve

max
φ∈P

E(x,v)∼D[REV(φ(x); v)] (PP)

where P is a class of pricing policies and REV is the revenue function (see Figure 1)

REV(p; v) = max(p, 0) · 1{p ≤ v}
having only access to samples of D.
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Figure 1: Revenue function

Medina and Mohri [2014a] establish that if the class of policies P has good generalization properties
(defined in terms of Rademacher complexity) then it is enough to solve the problem on the empirical
distribution given by the samples. The policy that optimizes over the empirical distribution is typically
called Empirical Risk Minimization (ERM).

The missing piece in this puzzle is the algorithm, i.e. how to solve the ERM problem. Previous papers
(Medina and Mohri [2014a], Medina and Vassilvitskii [2017], Shen et al. [2019]) approached this
problem by designing heuristics for ERM and giving conditions on the data under which the heuristics
perform well. In this paper we give the first provable approximation algorithm for the ERM problem
without assumptions on the data. We also establish hardness of approximation that complements our
algorithmic results. We believe these are the first hardness results for this problem. Even establishing
whether exactly solving ERM was NP-hard for a reasonable class of pricing policies was open prior
to this work.

Myersonian regression We now define formally the ERM problem for linear pricing policies1,
which we call Myersonian regression. Recall that the dataset is of the form {(xt, vt)}t=1..m with
xt ∈ Rn, ‖xt‖2 ≤ 1 and vt ∈ [0, 1]. The goal is to find a linear pricing policy x 7→ 〈w, x〉 with
‖w‖2 ≤ 1 that maximizes the revenue on the dataset, i.e.

max
w∈Rn;‖w‖2≤1

m∑
t=1

REV(〈w, xt〉; vt) (MR)

It is worth noting that we restrict ourselves to 1-Lipschitz pricing policies by only considering policies
with ‖w‖2 ≤ 1. Bounding the Lipschitz constant of the pricing policy is important to ensure that the
problem is stable and hence generalizable. We will contrast it with the unregularized version of (MR)
in which the constraint ‖w‖2 ≤ 1 is omitted:

R∗ = max
w∈Rn

m∑
t=1

REV(〈w, xt〉; vt) (UMR)

Without the Lipschitz constraint it is possible to come up with arbitrarily close datasets in the sense
that ‖xt − x̃t‖ ≤ ε and |vt − ṽt| ≤ ε generating vastly different revenue even as ε→ 0. We will also
show that (UMR) is APX-hard, i.e. it is NP-hard to approximate within 1 − ε0 for some constant
ε0 > 0.

Our Results Our main result is a polynomial time approximation scheme (PTAS) using dimension-
ality reduction. We present two versions of the same algorithm.

The first version of the PTAS has running time

O(epoly(1/ε) · poly(n,m))

1The choice of linear function is actually not very restrictive. A common trick in machine learning is to
map the features to a different space and train a linear model on ψ(x). For example if d = 2, the features are
(x1, x2). By mapping ψ(x) = (1, x1, x2, x

2
1, x

2
2, x1x2) ∈ R6, and training a linear function on ψ(x), we are

actually optimizing over all quadratic functions on the original features. Similarly, we can optimize over any
polynomial of degree k or even more complex functions with an adequate mapping.
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and outputs an L-Lipschitz pricing policy with L = O(ε
√
n) that is an εm-additive approximation of

the optimal 1-Lipschitz pricing policy.

The second version of the PTAS has running time

O(npoly(1/ε) · poly(n,m))

and outputs a 1-Lipschitz pricing policy that is an εm-additive approximation of the optimal 1-
Lipschitz pricing policy.

We complement this result by showing that the Myersonian regression problem (MR) is NP-hard
using a reduction from 1-IN-3-SAT. While it is not surprising that solving Myersonian regression
exactly is NP-hard given the discontinuity in the reward function, this has actually been left open
by several previous works. In fact, the same reduction implies that under the Exponential Time
Hypothesis (ETH) any algorithm approximating it within an εm additive factor must run in time at
least eΩ(poly(1/ε)), therefore ruling out a fully-polynomial time approximation scheme (FPTAS) for
the problem. This hardness of approximation perfectly complements our algorithmic results, showing
that our guarantees are essentially the best that one can hope for.

Finally we discuss stability and generalization of the problem. We show that (UMR) is unstable in
the sense that arbitrarily small perturbations in the input can lead to completely different solutions.
On the other hand (MR) is stable in the sense that the optimal solution varies continuously with the
input.

We also discuss the setting in which there is an underlying distribution D on datapoints (x, v)
and while we optimize on samples from D, we care about the loss with respect to the underlying
distribution. We also discuss stability of our algorithms and how to extend them to other loss functions.
Due to space constraints, most proofs are deferred to the Supplementary Material.

Related work Our work is in the broad area of learning for revenue optimization. The papers in
this area can be categorized along two axis: online vs batch learning and contextual vs non-contextual.
In the online non-contextual setting, Kleinberg and Leighton [2003] give the optimal algorithm for a
single buyer which was later extended to optimal reserve pricing in auctions in Cesa-Bianchi et al.
[2013]. In the online contextual setting there is a stream of recent work deriving optimal regret
bounds for pricing (Amin et al. [2014], Cohen et al. [2016], Javanmard and Nazerzadeh [2016],
Javanmard [2017], Lobel et al. [2017], Mao et al. [2018], Leme and Schneider [2018], Shah et al.
[2019]). For batch learning in non-contextual settings there is a long line of work establishing tight
sample complexity bounds for revenue optimization (Cole and Roughgarden [2014], Morgenstern
and Roughgarden [2015, 2016]) as well as approximation algorithms to reserve price optimization
(Paes Leme et al. [2016], Roughgarden and Wang [2019], Derakhshan et al. [2019]).

Our paper is in the setting of contextual batch learning. Medina and Mohri [2014a] started the work
on this setting by showing generalization bounds via Rademacher complexity. They also observe that
the loss function is discontinuous and non-convex and propose the use of a surrogate loss. They bound
the difference between the pricing loss and the surrogate loss and design algorithms for minimizing
the surrogate loss. Medina and Vassilvitskii [2017] design a pricing algorithm based on clustering,
where first features are clustered and then a non-contextual pricing algorithm is used on each cluster.
Shen et al. [2019] replaces the pricing loss by a convex loss function derived from the theory of
market equilibrium and argue that the clearing price is a good approximation of the optimal price
in real datasets. A common theme in the previous papers is to replace the pricing loss by a more
amenable loss function and give conditions under which the new loss approximates the pricing loss.
Instead here we study the pricing loss directly. We give the first hardness proof in this setting and
also give a (1− ε)-approximation without any conditions on the data other than bounded norm.

Our approximation algorithms for this problem works by projecting down to a lower-dimensional
linear subspace and solving the problem on this subspace. In this way, it is reminiscent of the area of
compressed learning (Calderbank et al. [2009]), which studies if it is possible to learn directly in a
projected (“compressed”) space. More generally, our algorithm fits into a large body of work which
leverages the Johnson-Lindenstrauss lemma for designing efficient algorithms (see e.g. Linial et al.
[1995] and Har-Peled et al. [2012]).

Hardness of approximation have been established for non-contextual pricing problems with multiple
buyers, e.g Paes Leme et al. [2016], Roughgarden and Wang [2019]. Such hardness results hinge on
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the interaction between different buyers and don’t translate to single-buyer settings. The hardness
result in our paper is of a different nature.

2 Approximation Algorithms

The main ingredient in the design of our algorithms will be the Johnson-Lindenstrauss lemma:

Lemma 2.1 (Johnson-Lindenstrauss). Given a vector x ∈ Rn with ‖x‖2 = 1, if J̃ is a k × n matrix
formed by taking k random orthogonal vectors as rows for k = O(ε−2 log δ−1) and J =

√
n/k · J̃ ,

then:
Pr(|‖Jx‖2 − 1| > ε) ≤ δ

The following is a direct consequence of the JL lemma:
Lemma 2.2. Let J be the JL-projection with k = O(ε−2 log(1/ε)), w∗ be the optimal solution to
(MR) and xt is a point in the dataset with 〈w∗, xt〉 ≥ ε then with probability at least 1 − ε the
following inequalities hold:

(1− ε) · ‖xt‖2 ≤ ‖Jxt‖2 ≤ (1 + ε) · ‖xt‖2
(1− ε) · 〈w∗, xt〉 ≤ 〈Jw∗, Jxt〉 ≤ (1 + ε) · 〈w∗, xt〉

PTAS - Version 1: For the first version of the algorithm, we randomly sample 1/ε JL-projections
J with k = O(ε−2 log(1/ε)) and search over an ε-net of the projected space. For each projection, we
define a set of discretized vectors as:

D = {ŵ; ŵ = ε5z for z ∈ Zk, ‖ŵ‖2 ≤ 1 + ε}
Then we search for the vector ŵ ∈ D that maximizes

m∑
t=1

REV(〈ŵ, Jxt〉; vt) (1)

Over all projections, we output the vector w = J>ŵ that maximizes the revenue.

Theorem 2.3. There is an algorithm with running timeO(epoly(1/ε)poly(n,m)) that outputs a vector
w with ‖w‖2 ≤ O(ε ·

√
n) such that:

E

[∑
t

REV(〈w, xt〉; vt)

]
≥ R∗ −O(εm)

where R∗ =
∑
t REV(〈w∗, xt〉; vt) for the optimal w∗ with ‖w∗‖2 ≤ 1.

Proof. The running time follows from the fact that |D| ≤ (1/ε)O(k) = eO(poly(1/ε)). We show the
approximation guarantee in three steps:

Step 1: defining good points. Let w∗ be the optimal solution to (MR). Say that a datapoint (xt, vt)
is good if ε ≤ 〈w∗, xt〉 ≤ vt and the event in Lemma 2.2 happens. If G is the set of indices t
corresponding to good datapoints, then with at least 1/2 probability:∑

t∈G
〈w∗, xt〉 ≥ R∗ − 2εm

This is true since the points with 〈w∗, xt〉 < ε can only affect the revenue by at most ε each and for
the remaining m′ points, each can fail to be good with probability at most ε. The revenue loss in
expectation is at most m′ε, so by Markov’s inequality it is at most 2m′ε with 1/2 probability.

Step 2: projection of the optimal solution. Define w′ = (1− 2ε) · Jw∗ and define ŵ to be the vector
in D obtained by rounding all coordinates of w′ to the nearest multiple of ε5. For any good index
t ∈ G we have:

〈ŵ, Jxt〉 = 〈ŵ − w′, Jxt〉+ 〈w′, Jxt〉 ≤ (1 + ε)ε5
√
k + (1− 2ε)〈Jw∗, Jxt〉

≤ (1 + ε)ε5
√
k + (1− ε)〈w∗, xt〉 ≤ vt
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and hence that datapoint generates revenue since the price is below the value. And:

〈ŵ, Jxt〉 = 〈ŵ − w′, Jxt〉+ 〈w′, Jxt〉 ≥ −(1 + ε)ε5
√
k + (1− 2ε)〈Jw∗, Jxt〉

≥ −(1 + ε)ε5
√
k + (1− 5ε)〈w∗, xt〉

Step 3: bounding the revenue. Finally, note that

〈w, xt〉 = 〈J>ŵ, xt〉 = 〈ŵ, Jxt〉

so:∑
t

REV(〈w, xt〉; vt) =
∑

0≤〈ŵ,Jxt〉≤vt
〈ŵ, Jxt〉 ≥

∑
t∈G
〈ŵ, Jxt〉 ≥ (1− 5ε)

∑
t∈G
〈w∗, xt〉 −O(ε)

≥ (1− 5ε)(R∗ − 2mε)−O(εm) = R∗ −O(εm)

Since we sample 1/ε independent JL projections and for each, we find an O(εm) additive approx-
imation with probability at least 1/2, our algorithm achieves expected revenue R∗ − O(εm), as
desired.

PTAS – Version 2 The main drawback of the first version of the PTAS is that we output an ε
√
n-

Lipschitz pricing policy that is an approximation to the optimal 1-Lipschitz pricing policy. With
an increase in running time, it is possible to obtain the same approximation with an 1-Lipschitz
pricing policy (i.e. ‖w‖2 ≤ 1). For that we will increase the dimension of the JL projection to
k = O(ε−2 log(n/ε)). This will allow us to have the following conditions hold simultaneously for
all datapoints with probability at least 1− ε:

(1− ε) · ‖xt‖2 ≤ ‖Jxt‖2 ≤ (1 + ε) · ‖xt‖2
〈w∗, xt〉 − ε2 ≤ 〈Jw∗, Jxt〉 ≤ 〈w∗, xt〉+ ε2

This follows from the same argument in Lemma 2.2, taking the Union Bound over all points. Now
we repeat the following process (1/ε)O(k log(1/ε)) times:

Choose a random point ŵ in the unit ball in Rk. For each such ŵ we define the important set as
t ∈ Ĝ(ŵ) if 10ε ≤ 〈ŵ, Jxt〉 ≤ vt. Now, we check (by solving a convex program) if there exists a
vector w ∈ Rn with ‖w‖2 ≤ 1 such that:

〈ŵ, Jxt〉
1 + 5ε

≤ 〈w, xt〉 ≤ vt,∀t ∈ Ĝ(ŵ)

If it exists, call it w(ŵ) otherwise discard ŵ. Over all (1/ε)O(k log(1/ε)) iterations, for all vectors ŵ
that weren’t discarded, choose the one maximizing the objective (1) and output w(ŵ).

Theorem 2.4. There is an algorithm with running time O(npoly(1/ε)poly(n,m)) that outputs a
vector w with ‖w‖2 ≤ 1 such that:

E

[∑
t

REV(〈w, xt〉; vt)

]
≥ R∗ −O(εm)

where R∗ =
∑
t REV(〈w∗, xt〉; vt) for the optimal w∗ with ‖w∗‖2 ≤ 1.

Proof. Step 1: When ŵ lies close to the projection of the optimum, the convex program is feasible

Let w′ = (1− 2ε) · Jw∗. If ||ŵ − w′|| ≤ ε5 we will show that the convex program is solvable. For
t ∈ Ĝ(ŵ) we have

〈w∗, xt〉 ≤ 1

1− 2ε
〈w′, Jxt〉+ ε2 ≤ (1 + 3ε)(〈ŵ, Jxt〉+ (1 + ε)ε5) + ε2 ≤ (1 + 5ε)vt

and
〈w∗, xt〉 ≥ 1

(1− 2ε)
〈w′, Jxt〉 − ε2 ≥ (1 + 2ε)〈w′, Jxt〉 − ε2

≥ (1 + 2ε)(〈ŵ, Jxt〉 − (1 + ε)ε5)− ε2 > 〈ŵ, Jxt〉
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Thus 1/(1 + 5ε) · w∗ is a solution to the convex program.

Step 2: When ŵ lies close to the projection of the optimum, any solution to the convex program
achieves a good approximation

If ||ŵ − w′|| ≤ ε5 then for each data point xt with t ∈ Ĝ(ŵ)

〈ŵ, Jxt〉 = 〈ŵ − w′, Jxt〉+ 〈w′, Jxt〉 ≥ −(1 + ε)ε5 + (1− 2ε)〈Jw∗, Jxt〉
≥ −(1 + ε)ε5 + (1− 5ε)〈w∗, xt〉

Note the last step holds because

〈w∗, xt〉 ≥ 〈ŵ, Jxt〉 ≥ 10ε

and
〈Jw∗, Jxt〉 ≥ 〈w∗, xt〉 − ε2.

Next, we deal with the datapoints with t /∈ Ĝ(ŵ). For these datapoints, either 〈ŵ, Jxt〉 < 10ε in
which case

〈w∗, xt〉 ≤ (1 + 5ε)〈w′, Jxt〉+ ε2

≤ (1 + 5ε)(〈ŵ, Jxt〉+ (1 + ε)ε5) + ε2 ≤ 11ε

or 〈ŵ, Jxt〉 > vt ≥ 10ε in which case

〈w∗, xt〉 ≥ 1

(1− 2ε)
〈w′, Jxt〉 − ε2 ≥ (1 + 2ε)〈w′, Jxt〉 − ε2

≥ (1 + 2ε)(〈ŵ, Jxt〉 − (1 + ε)ε5)− ε2 > (1 + 2ε)(vt − (1 + ε)ε5)− ε2 > vt

Thus, the total revenue achieved by w(ŵ) is at least
1

1 + 5ε

∑
t∈Ĝ(ŵ)

(
−2ε5 + (1− 5ε)REV(〈w∗, xt〉; vt)

)
≥ −2ε5m+ (1− 10ε)

∑
t∈Ĝ(ŵ)

REV(〈w∗, xt〉; vt)

≥ −2ε5m+ (1− 10ε)

(∑
t

REV(〈w∗, xt〉; vt)− 11εm

)
≥
∑
t

REV(〈w∗, xt〉; vt)− 25εm

Step 3: The algorithm finds a good approximation with probability 1−O(ε)

It suffices to show that our algorithm will choose some ŵ such that ||ŵ − w′|| ≤ ε5 with probability
1−O(ε). Note

||w′||2 ≤ (1− 2ε)(1 + ε) ≤ 1− ε.
Thus the probability that ŵ lands within distance ε5 of w′ is ε5k. Since we choose (1/ε)O(k log(1/ε))

different points ŵ independently at random, the probability that at least one of them lands within
distance ε5 of w′ is at least 1− ε.

3 Hardness of approximation

Unlike `2 and `1 regression, Myersonian regression is NP-hard. We prove two hardness results. First
we show that without the assumption ||w||2 ≤ 1, achieving a constant factor approximation is NP-
hard. Then we show that under the Exponential Time Hypothesis (ETH), any algorithm that achieves
a εm-additive approximation for Myersonian regression must run in time at least exp(O

(
ε−1/6

)
).

1-in-3-SAT We will rely on reductions from the 1-IN-3-SAT problem, which is NP-complete. The
input to 1-IN-3-SAT is an expression in conjunctive normal form with each expression having 3
literals per clause (i.e. a collection of expression of the type Xi ∨ Xj ∨ Xk). The problem is to
determine if there is a truth assignment such that exactly one literal in each clause is true (and the
remaining are false).
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GAP 1-in-3-SAT We will need a slightly stronger hardness result that 1-in-3-SAT is not only hard
to solve exactly, but it is hard to approximate the maximum number of clauses that can be satisfied. In
particular, there are constants 0 < c1 < c2 ≤ 1 such that given a 1-in-3-SAT instance, it is NP-hard
to distinguish the following two cases

• At most c1-fraction of the clauses can be satisfied
• At least c2-fraction of the clauses can be satisfied

ETH The Exponential Time Hypothesis says that 3-SAT with N variables can’t be solved in time
O(2cNpoly(N)) for some constant c > 0. Since there is a linear time reduction between 3-SAT and
1-IN-3-SAT and 1-IN-3-SAT is NP-complete, then ETH implies that there is no O(2cNpoly(N))
time algorithm for 1-IN-3-SAT.

Lemma 3.1. There exists a constant ε > 0 for which it is possible to reduce (in poly-time) an
instance of (c1, c2)-GAP 1-in-3-SAT to computing a (1 − ε)-approximation for an instance of the
unregularized Myersonian regression problem (UMR).
Theorem 3.2. There is some constant ε > 0 for which obtaining a (1 − ε)-approximation for the
unregularized Myersonian regression problem (UMR) is NP-hard.

The proof follows directly from Lemma 3.1 and the NP hardness of GAP-1-IN-3-SAT. The previous
result rules out a PTAS for (UMR). In contrast we will see that while (MR) is still NP-hard to solve
exactly, it admits a PTAS. However, runtime that is superpolynomial in ε is necessary.
Lemma 3.3. It is possible to transform (in poly-time) an instance of 1-IN-3-SAT with N variables
into an instance of Myersonian regression with the promise ||w||2 ≤ 1 and n = O(N) and m =
O(N5) in such a way that a satisfiable 1-IN-3-SAT instance will map to an instance of Myersonian
regression with revenue R ≤ O(N2.5) while any unsatisfiable instance will map to an instance with
revenue at most R− 0.5N−0.5.

If we assume ETH, we obtain a bound on the runtime of any approximation algorithm:
Theorem 3.4. Under ETH, any algorithm that achieves a εm-additive (or (1 − ε)-multiplicative)
approximation for Myersonian regression must run in time at least O(2Ω(ε−1/6)poly(n,m)).

Proof. Assume there is an approximation algorithm for Myersonian regression with running time
O(2Ω(ε−1/6)poly(n,m)) for the constant c in the definition of ETH.

The for an instance of 1-IN-3-SAT with N variables, consider the transformation in Lemma 3.3
and apply the approximation algorithm with ε = O(1/N6). Such an approximation algorithm
would run in time O(2cNpoly(N)) and distinguish between the satisfiable and unsatisfiable cases of
1-IN-3-SAT, contradicting ETH.

4 Stability, Generalization and Extensions

We start by commenting on the importance of the constraint ‖w‖2 ≤ 1 imposed on the problem
(MR), which is closely related to stability and generalization.

Offset term It will be convenient to allow a constant term in the pricing loss, i.e. we will look at
pricing functions of the type:

x 7→ w1 +

n∑
i=2

wix
t
i

This is equivalent to assuming that all the datapoints have xt1 = 1 and ‖xt‖2 ≤
√

2. We renormalize
such that we still have

∑n
i=2(xti)

2 ≤ 1. We will make this assumption for the rest of this section.

We note that this assumption doesn’t affect the results in the previous sections. The positive results
remain unchanged since we don’t have any assumption on the data other than the norm being
bounded by a constant. Our hardness results can be easily adapted to the setting with an offset term.
We can essentially force the constant term to be very small by adding Ω(N103) data points with
vt = 1/N100, xt1 = 1 and all other coordinates 0.
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Stability We start by discussing the constraint ‖w‖2 ≤ 1 imposed on the problem (MR). Without
this constraint, it is possible to completely change the objective function with a tiny perturbation
in the problem data. Let R∗ be the optimal revenue in the unregularized Myersonian regression
(UMR) for some instance (xt, vt). A natural upper bound on R∗ is the maximum welfare, given by
W =

∑m
t=1 v

t. Typically R∗ < W . Consider such an instance. For any fixed δ < 0 consider the
following two instances:

• x̃t = (xt, 0) ∈ Rn+1

• x̄t = (xt, δvt) ∈ Rn+1

The instances (x̃t, vt)t=1..m and (x̄t, vt)t=1..m are very close to each other in the sense that the labels
are the same and the features have:

‖x̃t − x̄t‖ ≤ δ, ∀t.
However, the optimal revenue of (x̃t, vt)t=1..m under (UMR) is R∗ while the optimal revenue of
(x̄t, vt)t=1..m is W by choosing w = (0, δ−1). This is true even as δ → 0.

On the other hand, the solution of the regularized problem (MR) is Lipschitz-continuous in the data.
Theorem 4.1. Consider two instances (x̃t, ṽt)t=1..m and (x̄t, v̄t)t=1..m such that ‖x̃t − x̄t‖ ≤ δ

and |ṽt − v̄t| ≤ δ for all t, then if R̃ and R̄ are the respective solutions to (MR) then:

|R̃− R̄| ≤ O(δm)

Uniform Convergence and Generalization To understand generalization, we are concerned with
the performance of the algorithm on a distribution D that generates datapoints (xt, vt). We will
sample m points from this distribution and obtain a dataset S = {(xt, vt); t = 1..m}. We want to
compare across all pricing policies w the objective function on the sample:

FS(w) =
1

m

m∑
t=1

REV(〈w, xt〉; vt)

with the performance on the original distribution:

FD(w) = E(x,v)∼D
[
REV(〈w, xt〉; vt)

]
Medina and Mohri [2014a] provide bounds for |FS(w) − FD(w)| by studying the empirical
Rademacher complexity of the pricing function. The following statement follows directly from
Theorem 3 in their paper. Note that while their theorem bounds only one direction, the same proof
also works for the other direction.
Theorem 4.2 (Medina and Mohri [2014a]). For any δ > 0 it holds with probability 1− δ over the
choice of a sample S of size m that:

|FS(w)− FD(w)| ≤ O

(√
n log(m/n) + log(1/δ)

m

)
Corollary 4.3. Let wS be the output of the ERM algorithm on sample S of size m =
O(ε−2[n log(n/d) + log(1/δ)]). Then with probability 1− δ we have:

FD(wS) ≥ max
‖w‖2≤1

FD(w)−O(ε)

Extensions to other loss functions While our results are phrased in terms of the pricing, they hold
for any lower-semi-Lipschitz reward fuction, i.e. any function such that:

R(p− ε) ≥ R(p)− ε

An important example studied in Medina and Mohri [2014a], Shen et al. [2019] is the revenue of a
second price auction with reserves price p. Given two highest bids v1 and v2 the revenue function is
written as:

SPA(p; v1, v2) = max(v2, p) · 1{p ≤ v1}

8



5 Conclusion

We give the first approximation algorithm for learning a linear pricing function without any assumption
on the data other than normalization. This provides a key missing component to the field of learning
for revenue optimization, where ERM was shown to be optimal in Medina and Mohri [2014a] but
there were no algorithms with provable guarantees for it.

Our algorithm is polynomial in the number of features dimensions n and on the number of datapoints
m but exponential in the accuracy parameter ε. We show that the exponential dependency on ε is
necessary.

In this paper we assume that the bids in the dataset represent the buyer’s true willingness to pay as
in Medina and Mohri [2014a], Medina and Vassilvitskii [2017], Shen et al. [2019]. A interesting
avenue of investigation for future work is to understand how strategic buyers would change their bids
in response to a contextual batch learning algorithm and how to design algorithms that are aware
of strategic response. This is a well studied problem in non-contextual online learning (Amin et al.
[2013], Medina and Mohri [2014b], Drutsa [2017], Vanunts and Drutsa [2019], Nedelec et al. [2019])
as well as in online contextual learning (Amin et al. [2014], Golrezaei et al. [2019]). Formulating a
model of strategic response to batch learning algorithms is itself open.

Broader Impact Statement

While our work is largely theoretical, we feel it can have downstream impact in the design of better
marketplaces such as those for internet advertisement. Better pricing can increase both the efficiency
of the market and the revenue of the platform. The latter is important since the revenue of platforms
keeps such services (e.g. online newspapers) free for most users.
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A Omitted Proofs

Proof of Lemma 2.1

Proof of Lemma 2.1. Apply the JL lemma for vectors xt/‖xt‖2, w∗/‖w∗‖2 and (xt +
w∗)/‖xt + w∗‖2 with δ = ε/3. Then with probability at least 1− ε the following three inequalities
hold (using the Union Bound):

(1− ε) · ‖xt‖2 ≤ ‖Jxt‖2 ≤ (1 + ε) · ‖xt‖2

(1− ε) · ‖w∗‖2 ≤ ‖Jw∗‖2 ≤ (1 + ε) · ‖w∗‖2
(1− ε) · ‖xt + w∗‖2 ≤ ‖J(xt + w∗)‖2 ≤ (1 + ε) · ‖xt + w∗‖2

Since we can write the dot-product as follows:

〈w∗, xt〉 =
1

2

(
‖w∗ + xt‖22 − ‖w∗‖22 − ‖xt‖22

)
〈Jw∗, Jxt〉 =

1

2

(
‖Jw∗ + Jxt‖22 − ‖Jw∗‖22 − ‖Jxt‖22

)
then we have:

|〈Jw∗, Jxt〉 − 〈w∗, xt〉| ≤ O(ε2) ≤ O(ε) · 〈w∗, xt〉

Proof of Lemma 3.1

Proof of Lemma 3.1. We proceed in three steps:

Step 1: define a transformation from 1-IN-3-SAT to Myersonian regression. Consider a 1-IN-3-SAT
instance with N variables X1, . . . , XN . For 1 ≤ i ≤ N let si be the number of clauses that Xi

appears in. Let K be a sufficiently large constant (depending only on c1, c2). We will map to an
instance of Myersonian regression with n = 2N variables, where i = 1..N will correspond to
boolean literals Xi and i = (N + 1)..2N will correspond to negated literals Xi. We will build the
instance as follows: for each i = 1..N we will create the following datapoints (xt, vt). In each case,
the unset coordinates are zero.

• K2si datapoints with vt = 1− 2
Ksi

, xti = 1.

• K2si datapoints with vt = 1− 2
Ksi

, xtN+i = 1.

• K3s2
i −K2si datapoints with vt = 1

Ksi
, xti = 1.

• K3s2
i −K2si datapoints with vt = 1

Ksi
, xtN+i = 1.

• K2si points with vt = 1− 1
Ksi

, xti = 1, xtN+i = 1

We call these data points auxiliary data points. Now for each clause Xi ∨Xj ∨Xk we will add a
datapoint with vt = 1 and xti = xtN+j = xtk = 1. We call these data points clause-data points. This
concludes the transformation2

Step 2: we show that the optimal revenue of the Myersonian regression is attained when for each
i exactly one of wi, wi+N is in the interval

(
2

3Ksi
, 1
Ksi

]
and the other is in the interval

(
2
3 , 1
]
.

Furthermore, the maximum possible revenue from all auxiliary data points is 3 ·K2(s1 + · · ·+ sN )−
3KN .

2It is worth noticing that while the Myersonian regression problem has the assumption ‖xt‖2 ≤ 1, in the
transformation we can have ‖xt‖2 ≤

√
3. We can rescale every parameter by

√
3, but since constants don’t

matter in our analysis, we keep the slightly larger norm to keep the notation simpler.
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First note that if we set wi = 1 − 2
Ksi

and wi+N = 1
Ksi

the total revenue from the auxiliary data
points involving wi and wi+N is

K2si

(
1− 2

Ksi

)
+K3s2

i

(
1

Ksi

)
+K2si

(
1− 1

Ksi

)
= 3 ·K2si − 3K

Now we verify that in each of the following cases, if we fix the values of wj , wj+N for j 6= i, then
the revenue can be strictly increased by setting wi = 1− 2

Ksi
and wi+N = 1

Ksi
:

• wi ≤ 2
3Ksi

or wi+N ≤ 2
3Ksi

If wi ≤ 2
3Ksi

then the total revenue from the auxiliary data points involving wi, wi+N is at
most

K3s2
i

(
2

3Ksi

)
+ max

(
K3s2

i

(
1

Ksi

)
,K2si

(
1− 2

Ksi

))
+K2si

(
1− 1

Ksi

)
which is at most 2.7K2si. If we instead set wi = 1− 2

Ksi
and wi+N = 1

Ksi
, we increase

the revenue from auxiliary data points by at least 0.3K2si − 3K and we affect at most si
clause data points so the total revenue is increased.

• 1
Ksi

< wi ≤ 2
3 or 1

Ksi
< wi+N ≤ 2

3

This case is dealt with similar to the above.

• wi + wi+N ≤ 2
3 or wi + wi+N > 1− 1

Ksi

This case is dealt with similar to the above.

The main claim in this step can be verified by inspecting the leftover regions, which correspond to
the white regions in Figure 2.

2
3Ksi

1
Ksi

2
3

1− 1
Ksi

2
3Ksi

1
Ksi

2
3

1− 1
Ksi

wi

wi+N

Figure 2: Optimal revenue for the instance in the reduction are achieved for (wi, wi+N ) in the white
region.

Step 3: Bound the revenue for c1-unsatisfiable and c2-satisfiable 1-IN-3-SAT instances. If the
instance is c2-satisfiable, then we can assign xi = 1 − 2

Ksi
and xN+i = 1

Ksi
when Xi is true in

the c2-satisfying assignment and xi+N = 1 − 2
Ksi

and xi = 1
Ksi

otherwise. This achieves a total
revenue of

R2 = 3K2(s1 + · · ·+ sN )− 3KN + c2S

12



where S is the number of clauses in the formula. Note s1 + · · ·+ sN = 3S so
R2 = (9K2 + c2)S − 3KN

If the formula is not c1-satisfiable then there can be no solution to the Myersonian regression that
achieves revenue more than

R1 = 9K2S − 3KN + c1S +
3

K
(1− c1)S

This is because for any values for the variables, we can consider letting Xi be true in the Boolean
formula whenever wi ∈

(
2
3 , 1
]

and Xi be false when wi+N ∈
(

2
3 , 1
]
. By assumption, at least

1− c1-fraction of the clauses (e.g. (Xi ∨Xj ∨Xk)) in the Boolean formula are violated meaning
that either there is more than one true literal, in which case:

wi + wj+N + wk ≥
4

3
or all literals are false, in which case:

wi + wj+N + wk ≤
3

K
Now clearly S > N/3 (since each variable must appear in at least one clause). Since 0 < c1 < c2 ≤ 1
are fixed constants (independent of N ), if we choose K sufficiently large in terms of c1, c2, there is a
(1− ε)-factor gap between R1 and R2 for some small constant ε > 0 independent of N .

Proof of Lemma 3.3

Proof of Lemma 3.3. Note we can assume that in the original 1-IN-3-SAT instance, there are at most
O(N3) clauses and each variable appears in at most O(N2) clauses. In the instance constructed in
the proof of Lemma 3.1, the optimal solution w has ||w||2 = O(

√
N). Construct the same instance

but with all values vt scaled down by a factor of 1/
√
N . Call this instance M .

Following the same argument as in the proof of Lemma 3.1, if the original 1-IN-3-SAT instance is
completely satisfiable, then in instance M it is possible to achieve a total revenue of

R =
3K2(s1 + · · ·+ sN )√

N
− 3K

√
N +

S√
N

=
(9K2 + 1)S√

N
− 3K

√
N

and if the original 1-IN-3-SAT instance is not satisfiable then the maximum possible revenue in
instance M is at most

R′ ≤ 9K2S√
N
− 3K

√
N +

S − 1√
N

+
3

K
· 1√

N
≤ R− 1

2
√
N

where the last inequality holds as long as K ≥ 6.

Proof. Let w̃ be the optimal solution for data (x̃t, ṽt)t=1..m. We will construct a vector w such that:∑
t

REV(〈w, x̄t〉; v̄t) ≥
∑
t

REV(〈w̃, x̃t〉; ṽt)−O(δm)

Construct a vector w such that w1 = (1− 3δ)(w̃1 − 3δ) and wi = (1− 3δ)w̃i for i > 1. We have
‖w‖2 ≤ (1− 3δ)(1 + 3δ) ≤ 1

so the solution is feasible. For each point t such 0 ≤ 〈w̃, x̃t〉 ≤ vt observe that:
〈w, x̄t〉 ≥ (1− 3δ)(w̃1 − 3δ) + (1− 3δ)〈w̃2..n, x̄2..n〉

≥ (1− 3δ)〈w̃, x̃〉 − 3δ − ‖x̃2..n − x̄2..n‖ ≥ 〈w̃, x̃〉 − 7δ

and that:
〈w, x̄t〉 ≤ (1− 3δ)(w̃1 − 3δ) + (1− 3δ)[〈w̃2..n, x̃2..n〉+ δ]

≤ (1− 3δ)〈w̃, x̃〉 − (1− 3δ)2δ ≤ 〈w̃, x̃〉 − δ ≤ ṽt − δ ≤ v̄t

and hence
REV(〈w, x̄t〉; v̄t) ≥ REV(〈w̃, x̃t〉; ṽt)− 5δ

Summing over all t gets us the desired expression. This shows in particular that R̄− R̃ ≤ 5δm. Since
the setting is symmetric, the same proof (with roles of R̃ and R̄ reversed) gives us R̃− R̄ ≤ 5δm.
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Proof of Theorem 4.1

Proof of Theorem 4.1. Let w̃ be the optimal solution for data (x̃t, ṽt)t=1..m. We will construct a
vector w such that: ∑

t

REV(〈w, x̄t〉; v̄t) ≥
∑
t

REV(〈w̃, x̃t〉; ṽt)−O(δm)

Construct a vector w such that w1 = (1− 3δ)(w̃1 − 3δ) and wi = (1− 3δ)w̃i for i > 1. We have

‖w‖2 ≤ (1− 3δ)(1 + 3δ) ≤ 1

so the solution is feasible. For each point t such 0 ≤ 〈w̃, x̃t〉 ≤ vt observe that:

〈w, x̄t〉 ≥ (1− 3δ)(w̃1 − 3δ) + (1− 3δ)〈w̃2..n, x̄2..n〉
≥ (1− 3δ)〈w̃, x̃〉 − 3δ − ‖x̃2..n − x̄2..n‖ ≥ 〈w̃, x̃〉 − 7δ

and that:
〈w, x̄t〉 ≤ (1− 3δ)(w̃1 − 3δ) + (1− 3δ)[〈w̃2..n, x̃2..n〉+ δ]

≤ (1− 3δ)〈w̃, x̃〉 − (1− 3δ)2δ ≤ 〈w̃, x̃〉 − δ ≤ ṽt − δ ≤ v̄t

and hence
REV(〈w, x̄t〉; v̄t) ≥ REV(〈w̃, x̃t〉; ṽt)− 5δ

Summing over all t gets us the desired expression. This shows in particular that R̄− R̃ ≤ 5δm. Since
the setting is symmetric, the same proof (with roles of R̃ and R̄ reversed) gives us R̃− R̄ ≤ 5δm.

Proof of Corollary 4.3

Proof of 4.3. Let w∗ be the solution of max‖w‖2≤1 FD(w). By the previous theorem we have:

FD(wS) ≥ FS(wS)−O (ε)

FS(w∗) ≥ FD(w∗)−O (ε)

Since FS(wS) ≥ FS(w∗) by the definition of wS we obtain the result in the statement.
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