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How to succeed In business
with basic ML?
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Complications

e What if the seller only sees a sample of the
population?

e What if the seller doesn't know every buyer's
valuation?

e Can buyers lie and don't provide their true valuation?

e What if valuations change as a function of features?



Outline

@ Online revenue optimization

e Batch revenue optimization



Various flavors of this problem

@ One buyer (pricing) vs multiple buyers (auctions)

e Fixed valuations (realizable), random valuations (stochastic)
and worst-case valuations (adversarial)

@ Contextual vs non-contextual

e Strategic vs myopic buyers



Definitions

Valuation (v ): What a buyer is willing to pay for a good

Bid: How much a buyer claims she is willing to pay

Reserve price (p): Minimum price acceptable to the
seller

Revenue ( Rev) :How much the seller gets from selling

Interactions (7" ): Number of times buyer and seller
Interact
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Single buyer
Valuation v+ = maximum willingness to pay
Reserve price py
Myopic (price taking buyer): buys whenever v; > p;

+ i.e. doesn't reason about consequences of purchasing
decision

+ revenue function is Rev(pg, vr) = ply,>p,

Strategic buyer: reasons about how purchasing decisions
affect future prices



Single myopic buyer

e Realizable setting: valuation is fixed but unknown
Vi =V €& [O, 1]

e Stochastic setting: valuations are sampled from an
unknown distribution

UtND

e Adversarial setting no assumption made on valuations

o Seller's goal: Minimize regret



Single myopic buyer




Fixed valuation

@Ut:UE[O,l]

T
® Regret: R = Tv — Z Rev(ps, vt)

t=1



Binary Search

o At round k Si = |ag,ar + Ar], s =0 and Agi1 = Ag/2

e While price accepted p; = ap + sQr11;5s =5+ 1

e Rejection: Start new round ai. 1 is last accepted price

1
o Stop AL < 7 offer pr = ay. for all t

Pt Pt v Dt

a A1 @V 1



Fast Search

e Kleinberg and Leighton 2007
o At round k S = |ag,ar + Ar|, s =0 and Ag1 = A%
e While price accepted p; = ap + sQri1;5s =5+ 1

e Rejection: Start new round ag1 is last accepted price

1
o Stop AL < ol offer pr = ay for all t

Dt Dt PV D7 Dk+1

ag Ak+1 A + Ak



Kleinberg and Leighton search

+ Analysis:

e in each round there is at most one no-sale
o for each sale, the regret is at most A,

e there are at most Ap/ANiyp1 = 1/A sales

e the total regret per round is O(1), since there are
O(log log T) rounds before A, < 1/T the total
regret is O(log log T).



Kleinberg and Leighton search

e Regret R € O(loglogT)

e Lower bound Q(loglogT)



Multiple valuations



Bandits

o Expected revenue curve R(p) = E,[Rev(p, v)]

Discretize Apply Bandits



Random valuation

o Valuation vy ~ D

p

T
® Regret R = T'maxE,|Rev(p,v:)| — 43[2}36’0(%7%)}
t=1

e General strategy: discretize prices and treat each prices as
a bandit

+ without any assumptions O~(T2/3) . balance the
discretization error and error in UCB

+ can be improved for special families of distributions



Random valuation

e Expected revenue function

o~ D |Rev(p,v)]is unimodal

+ Unimodal Lipschitz bandits [Combes, Proutiere 2014]

O(VT)

e If the revenue curve is quadratic around the maximum,
then Kleinberg and Leighton also give a O(\/T) regret
algorithm which is tight in this class.



Adversarial Valuations

e Compete against the best fixed price policy

T T
R = 43{maxz Rev(p™,v) — Z Rev(py, ’Ut)}
p*
t=1 t=1

e General approach: discretize prices in K intervals and
treat each as an arm. Use EXP3: [Kleinberg and Leighton

07]

R =0O(VKT)+ O(T/K) = O(T*3)
EXP3  discretization
regret regret
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Contextual Pricing

Each product represented by a context ¥+ € RY; ||zell2 < 1

Buyer valuation is a dot-product: vy = (6, x;)

The weight vector @ is fixed but unknown, ||6]|2 <1

T
Regret is: R = Z vy — Rev(py, vy)

t=1
Can we draw a connection with online learning?



Contextual Pricing

e Stochastic gradient give regret O(\/T) [Amin et al. 2014]

® Cohen, Lobel, Paes Leme, Vladu, Schneider: R = O(dlogT')

e Algorithm based on the ellipsoid method

Keep knowledge sets:
So = {0 € R%; [|0]]2 < 1}

. For each 7y we know: vy € |ay, by

a; = MiNgeg, <‘97 $t>

’ \ bt — INaXge s, <97 xt>




Contextual Pricing

@ Stochastic gradient give regret O(\/T) [Amin et al. 2014]

o Cohen, Lobel, Paes Leme, Vladu, Schneider: R = O(dlogT')

e Algorithm based on the ellipsoid method

If |a; —b:) < 1/T then we are done
If not, guess p; € |a;, b,

Update the knowledge set to either:
Sttr1 =10 € S¢; (0, w1) < py}
Str1 =10 € S¢; (0, 21) > i}
\




Contextual Pricing

e Stochastic gradient give regret O(\/T) [Amin et al. 2014]

o Cohen, Lobel, Paes Leme, Vladu, Schneider: R = O(d logT')

e Algorithm based on the ellipsoid method
Theorem: Setting p; =

has ©(2%1ogT') regret.

Theorem: Ellipsoid regularization

has O(d” logT') regret.

Theorem: Cylindrification regularizer

has O(dlogT)) regret.

Theorem: Squaring trick has regret
O(d*loglog T)

(at + by)

N | —




Strategic Buyers



Strategic buyers

o What happens if buyers know the seller will adapt prices?
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Setup

Buyer's valuation vy
Seller offers price py
Buyer acceptsa; = 1 or rejects a; = 0

Discount factor 7

Buyer optimizes T, {Zle vtat(vt — pt)}
T
Seller maximizes revenue 43{2&,5194

t=1




Three scenarios

e Fixed value v; =v [Amin et al. 2013, Mohri and
Mufioz 2014, Drutsa 2017}

@ Random valuation v; ~ D [Amin et al. 2013, Mohri
and Mufioz 2015}

o Contextual valuation v = (0, x4) with x; ~ D [Amin et
al. 2014]



Game setup

e Seller selects pricing algorithm
@ Announces algorithm to buyer

@ Buyer can play strategically



Measuring regret

e Best fixed price in hindsight?
real value = 8
fake value = 1
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Strategic Regret

e Compare against best possible outcome

T
e Fixed valuation R =Tv — Z Qi Py
t=1
e Random valuation R = T'maxE,[Rev(p,v;)] —
p
T

e Contextual valuation R = 43[2@ — atpt}
t=1

Clapy)




I'he Buyer

© Knowledge of future incentivizes buyer to lie

e Lie: Buyer rejects even if his value is greater than
reserve price



How can we reduce
the number of lies”
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Warm up

Monotone algorithms [Amin et al. 2013]
Choose 8 < 1
Offer prices p; = (3

If accepted offer price for the remaining rounds



@®

@®

@®

Warm up

Decrease slowly to make lies costly

Not too slow or accumulate regret

)

Regret in O(
1=

1

Lower bound Q(log log T" A

)



Better guarantees

e Fast search with penalized rejections [Mohri and
Mufioz 2014]

+ Every time a price is rejected offer again for several
rounds

log T’
+ Regret in O(, > ”y)

e Horizon independent guarantees [Drutsa 2017]

+ Regret In O(log logT)
1=




Random valuations

o Valuation vy ~ D

® Regret R = T'max D [Rev(p, vt)] — 43[045]975]
p

e UCB type algorithm with slow decreasing confidence
bounds [Mohri and Mufioz 2015]

+ Regret in O(\/T | : T1/4)
log 1/~




Contextual Valuation

e Explore exploit algorithm with longer explore time

@ Amin et al. 2014

® Regret In O(

T2/3 )
V1og(1/7)



Related Work

e Revenue optimization in second price auctions [Cesa-
Bianchi et al. 2013]

e Modeling buyers as regret minimizers [Nekipelov et al.
2015}

o Selling to no regret buyers [Heidari et al. 2017, Braverman
et al. 2017]

e Selling to patient buyers [Feldman et al. 2016}



Open problems

e Contextual valuations without realizability assumptions
e Strategic buyers with adversarial valuations

e Online learning algorithms in general auctions
[Roughgarden 2016]

e Multiple strategic buyers



Revenue from
Multiple Buyers
(Pricing -> Auctions)



Multiple buyers
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Multi-buyer Setup

N buyers with valuations v; € [0, 1| from distribution D;

Auction A is an allocat
payment p; : [0,1]" —

ion z;: [0,1]" — {0,1} and

R

N
Revenue: Rev(A) = sz-
i=1

Goal: Maximize E,, .. ., | Rev(A)
Notation: Given valuation vector (v1,...,UnN)
(U,U_i) — (?)1, ey Ui—1,U,U547,... ,UN)



Conditions on auction

N

@ Object can only be allocated once sz <1
1=1
e Individual rationality (IR): w; = v;z; — p; > 0

@ Incentive compatibility (IC):

’Uz'il?‘z'(vz', ’U—z') — pi(w, ’U—z') > ’Uz'ili‘z'(% U—z') — pi(’U, ’U—z')



Why |C"

e Buyers truly reveal how much they are willing to
pay.

@ Makes auction stable

@ Allows learning



Some |IC auctions

e Second price auction: allocate to the buyer with highest
v; and charge second highest value

@ xilevi:maxvj
J

® p; =max,x;v; if z; =1; 0 otherwise



Second price auction




|C auctions

e Second price with reserve price r: allocate to the highest
bidder if v; > 7. Charge p; = max(r, max,-; v;)

+ z; = 1if v; > max(maxv;,r)
J

+ pi = max(maxv;,r) if x; =1
JF#1



Second Price Auction With
Reserve




~ Myerson Auction
. o1y
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Some |IC auctions

Myerson's auction: pick a monotone bid deformation ¢;(-)
r; = 1 < ¢i(v;) = max ¢;(v;) and ¢i(vi) >0
J

Pi = gb{l(maX(mQX ij(”Uj), 0)) if x; =1, 0 otherwise
711
If ;i = ¢ Vi

+ 2; =1 v; = maxv,
J

pi=¢ ! max(mgx d(v;),0) = maX(mgx vi, ¢ (0)
171 171



Myerson Auction

e Optimal auction if v; ~ D; independently

o If D; is known, functions @; can be calculated exactly
e What about unknown distributions?

o Can we learn the optimal monotone functions?

e What is the sample complexity?



Sample Complexity of Auctions

e N bidders
e Valuations v; ~ D; independent
® Observe Nm samples Vi1 ... Vi ~D; i€ {l,...,N}

@ Find auction A such that

L Rev(A)| > (1 —¢) max L[ Rev(A)]

e Can we use empirical revenue optimization?
m N

mjgxx—> > pi(Vij, .-, UN;)
71=1 1=1




Lower bounds on sample
complexity

@ Proof for a single buyer [Huang et al. 2015]

e Problem reduces to finding the optimal price for a
distribution

e Need at least Q(%) samplesto geta 1 — ¢
approximation



ldea of the proof

@ ITwo similar distributions
3.5 = 321 @ KL(DlHDQ) — €

1
2.5 e Need — samples to
€

distinguish them w.h.p

0.0 0.5 1.0 1.5 2.0



Revenue curves

0.16

@ Approximately optimal revenue

0.14

sets disjoint

0.12

0-1 R

0.08

0.06

E,.p,[Rev(r,v)] for both distributions. It must

0.04

0.02

be able to distinguish them

0.0
0.0 . . 2.0




Upper bounds on sample
complexity

@ Auctions are parametrized by increasing functions ¢;
e Pseudo-dimension of increasing functions is infinite!

e Restrict the class and measure approximation error



t\eve\aucnons




@®

@®

@®

@®

t-level auctions

Morgenstern and Roughgarden 2016

Rank candidates using t-step functions

Pseudo dimension bounded O(Ntlog Nt)

L 1 L
Best t-level auction is a = approximation

t



t-level auctions

1
o Theorem: Let t = Q(—) , using a sample of size
N ¢ -~
m = Q(—S) the t-level auction A maximizing
€

empirical revenue is a 1 — ¢ approximation to the

optimal auction



Algorithm

e Cole and Roughgarden 2015, Huang et al. 2017

e In summary, optimize auctions over all increasing
functions

e Proof for finite support

e Extension by discretization

® O(i) samples

€3



s this enough?



Features In auctions

® |In practice valuations are not I.i.d.
@ They depend on features (context)
© Dependency is not realizable in general

e Algorithm of Huang et al. can be generalized to 1
feature



Display ads

@ Millions of auctions

o Parametrized by publisher information, time ot day,

@ Dependency of valuations on features is not clear



Setup

e Single buyer auction, find optimal reserve price

® Observe sample (x1,v1),...(Tm,Vm) from
distribution D over X x |0, 1]

e Hypotheses h: X — R

e Goal: Find max Lz v)~D | Rev(h(z),v)]
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Revenue function

Non-concave
Non-differentiable
Discontinuous

Is it possible to learn?

0.5

1.0

1.5

2.0



Learning Theory

@ Theorem [Mohri and Mufioz 2013] given a sample of
size m, with high probability the following bound holds
uniformly for all h ¢ H

L Rev(h — — Z Rev(h

Space of linear functions”



Can we do empirical
maximization”



Rev(r,b)

The revenue function

1.2 35.0
1.0 30.0
25.0
0.8 e
N
5 20.0
0.6 S
=  15.0
O i
0. AL
~ 10.0
0-2 5.0
0.0 0.0

. 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
71 71
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Revenue function

Non-concave
Non-differentiable
Discontinuous

Is it possible to optimize?




Surrogates

@ Loss similar to 0-1 loss

e Can we optimize a concave surrogate reward?

1.5 1.0
- Revenue
1.0
- Surrogate
0.5 0.5
0.0
0.5
0.0
'1-0
'1-5
2.0 0.5
"'2-5
'3-0 '1-0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0



Calibration

@ We say a function R: R x R — R is calibrated with
respect to Rev if for any distribution D we have

argmax E,|R(r,v)] C argmaxE,|Rev(r, v)]



Surrogates

@ Theorem [Mohri and Mufioz 2013]: Any concave
function that is calibrated is constant.




Continuous Surrogates

e Remove discontinuity

1.2

Lo e Difference of concave

:: functions

:: L e DC algorithm for linear

0.0 hypothesis class [Mohri and

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mufioz 2013}



Optimization Issues

e Sequential algorithm

@ Not scalable



Other class of
functions?



Clustering

o Munoz and Vassilvitskii 2017

o Show attainable revenue is related to variance of the
distribution

® Cluster features to have low variance of valuations

e Revenue related to quality of cluster
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Related problems

Dynamic reserves for repeated auctions [Kanoria and
Nazerzadeh 2017]

New complexity measures [Syrgkanis 2017]

Combinatorial auction sample complexity [Morgenstern
and Roughgarden 2016, Balcan et al. 2016

Optimal auction design with neural networks [Diitting
et al. 2017}



Conclusion

@ Revenue optimization is a crucial practical problem

@ Machine learning techniques have yielded new theory
and algorithms on this field

@ We need to better understand the relationship of
buyers and sellers

e [ here are several open problems still out there



Thank you!



