
An Introduction to Bernoulli Factories

Renato Paes Leme
Google Research

February 2022
Status: work in progress

Bernoulli factories are a tool from applied probability that is both entertaining as a puzzle and
has applications in various fields like statistical simulation, mechanism design and quantum physics.
Bernoulli refers to a Bernoulli random variable, of a p-coin:

X =

{
1, with probability p

0, with probability 1− p

We will assume we have access to this coin and can flip it as many times as we want, obtaining iid
samples from the distribution, but the bias p is unknown. And factory refers to a procedure (or
an algorithm) to transform a p-coin into an f(p)-coin. Before we give any formal definition, it is
instructive to consider some examples:

Example 0.1 (Squaring). To sample from a f(p)-coin with f(p) = p2, we can simply sample the
coin twice and output 1 is both coin tosses come up 1. Otherwise we output 0. We can represent
with the following decision tree:

Similarly, we can also sample from f(p) = p(1 − p), f(p) = (1 − p)2p3 and so on... This form
an important class of functions we will refer as Bernstein monomials. A Bernstein monomial is a
function of the type:

f(p) = pa(1− p)b

for non-negative integers a and b. To sample from it, we toss a+ b coins and output 1 if the first a
coins come up 1 and the last b coins come up 0.

1

Example 0.2 (Von Neumann’s Problem: unbiased coin from a biased one). Von Neumann asked
how to sample from an unbiased random variable having only access to a biased coin of unknown
bias. In other words, how to construct a factory for the constant function f(p) = 1/2. The solution
is as follows: flip the p-coin twice. If the coins come up 01 output 0, if they come up 10 output 1.
Otherwise, retry.

We can represent this procedure either as a finite automaton (a finite state machines whose
transitions are given by the outputs of the p-coin) or as an infinite tree, depicted in the right, where
each triangle has a copy of the tree.

Example 0.3 (A coin of any bias). Now consider the problem where we ask to produce a coin of
known bias c ∈ (0, 1) where c is a constant like 3/4, 1/3 or 1/π.

A coin of bias 3/4 is easy to sample. We already know how to sample a 1/2-coin. So we can
toss this coin twice and if it comes up 11 we output 0 otherwise we output 1. Using the same idea
we can sample any rational number with denominator 2k for some integer k.

Taking this idea a bit further, we don’t need to stop at a finite k. Think of constant c as:

c =
∞∑
k=1

bk
2k

with bk ∈ {0, 1}

Now consider the algorithm that starts at k = 1 and samples the 1/2-coin. Let Xk ∈ {0, 1} be
the k-th draw of the coin. If Xk < bk we output 1. If Xk > bk we output 0. If Xk = bk we increase
k and sample the 1/2-coin again.

We note that all this algorithm is doing is sampling an uniform random variable u from [0, 1]
by sampling its binary digits one by one: u =

∑∞
k=1Xk/2

k. Then we output 1 if u < c and output
0 if u > c. If u = c the procedure never terminates, but since u is a continuous random variable,
this happens with probability zero.

One thing to note is that this procedure requires in expectation only 2 samples from the 1/2-
coin (even though arbitrarily long sequences can happen with very small probability). Even though
our thought process is that we are sampling an uniform variable, we only need to sample enough
of its digits to decide whether u < c or u > c.

Example 0.4 (Bernstein polynomials). From the last two examples, we know that if we have a
p-coin for any p ∈ (0, 1) we can simulate any coin of known bias. From now on, we will assume that
besides having access to a p-coin of unknown p, we can also flip any c-coin for a known c ∈ (0, 1).
We will call those helper coins.

2

Using helper coins, we can now sample any Bernstein polynomial with normalized non-negative
coefficients, i.e.:

f(p) =
n∑
i=1

cip
ai(1− p)bi

for non-negative integers ai, bi ∈ Z+ and non-negative reals ci ∈ R+ such that
∑

i ci ≤ 1. For
convenience define c0 = 1−

∑n
i=1 ci. Now consider the following procedure.

Using the helper coins, we sample an index i ∈ {0, 1, . . . , n} with probability ci. To do that we
sample a c0-coin. If it comes up 1 we choose index i = 0. If not, we sample a c1/(1 − c0)-coin.
If comes up 1, we choose i = 1. If not, we sample a c2/(1 − c0 − c1)-coin and so on. Notice that
if we reach the last index without choosing anyone, we will sample the last coin with probability
cn/(1− c0 − . . .− cn−1) = cn/cn = 1. So we will always choose an index this way. It is easy to see
that each index is chosen with the correct probability.

After we sample an index i, we choose the output according to the Bernstein monomial pai(1−
p)bi if i > 0. If i = 0, we simply output 0. With that, the probability of sampling 1 is exactly f(p).

Example 0.5 (Series and Moment Generating Functions). An interesting puzzle is how to sample
from f(p) = p/(2− p). The answer becomes immediate once we write it as a Taylor series around
zero:

f(p) =
∞∑
i=1

1

2i
pi

The idea is exactly the same as in the previous example except that n is not infinity. We sample
an index i ∈ {1, 2, . . .} with probability 1/2i and the flip the p-coin i times. If all come up 1 we
output 1. Otherwise we output zero.

This is a special case of a moment generating function, i.e, a function that can be written as:
f(p) = E[pX] for some random variable X taking values in Z+. For example, f(p) = p/(2 − p) is
the moment generating function of a geometric random variable with parameter 1/2.

Another case of interest is f(p) = exp(p − 1) which is the moment generating function of a
Poisson random variable with parameter 1. Any function of that type admits a factory by sampling
X using the helper coins and then flipping the p-coin X times.

Why exact sampling? An important aspect of Bernoulli factories is that it asks for exact
sampling. The original motivation is to do exact simulation of stochastic processes. In those, small
sampling errors quickly compound, sometimes exponentially – hence the need for exact simulation.
The same situation happens in Bayesian inference, where sampling is a sub-routine in an iterative
procedure. Finally, in Mechanism Design the fact that sampling is exact allows us to design black-
box-reductions that are Bayesian-incentive compatible. Before the introduction of this machinery,
the known reduction in the general case was ε-Bayesian-incentive-compatible, i.e. agents had still
a small incentive to deviate from truth-telling.

This discussion is to motivate why in certain situations approximately simulating an f(p)-coin
is not enough. Approximately sampling can be easily done by the following method: let X1, . . . , Xn

be n draws from the p-coin and define its empirical average as:

p̂n =
X1 + . . .+Xn

n

3

We know by the Chernoff bound hat for n = O(ε−2 log(1/δ)) we have P[|p− p̂n| > ε] < δ. Hence if
f is continuous, estimating p by p̂n and using the helper coins to sample from a f(p̂n)-coin produces
a reasonable approximation of the f(p)-coin.

1 Necessary and sufficient conditions (Keane and O’Brien 1994)

We are now ready to give a formal definition of a single-parameter Bernoulli factory. Single-
parameter refers to the fact that we have only one coin with unknown bias. We will define a
Bernoulli factory as a (potentially infinite) decision tree. Each internal node corresponds to either
flipping the p-coin of unknown bias or flipping a helper c-coin of known bias. Those have two
outgoing edges labelled 0 and 1. The leaves of the trees correspond to output nodes labelled with
0 and 1.

The decision tree induces a random variable F corresponding to the output we obtain from the
decision tree. The variable F is implicitly parametrized by p ∈ (0, 1) since the output distribution
will depend on which p-coin is used. For all random variables related to the factory F we will use
Pp[·] and Ep[·] to denote the probability and expectation when a p-coin is used to execute the tree.

The variable F can take values 0, 1 or ∅. The first two correspond to reaching an output node
of that value and we use ∅ to denote the event that it never reaches an output node.

A decision tree is valid if it terminates almost surely, i.e. Pp[F = ∅] = 0. Given a function
f : S ⊆ (0, 1)→ (0, 1) we say that the decision tree is a Bernoulli factory for f whenever

Pp[F = 1] = f(p),∀p ∈ S

1.1 Necessary Conditions

The question we will try to answer next is what are the functions f that admit a Bernoulli factory.
We saw already many examples for which it is possible to construct a factory. It is also instructive
to consider two examples for which this is impossible:

4

Example 1.1 (Discontinuous function). In the first example we have a discontinuous function
f . The intuitive reason why we can’t implement f is that the factory has only access to samples
X1, X2, . . . from the p-coin. For sufficiently close points a− δ and a the distribution of the samples
is practically indistinguishable if we only look at finitely many samples. Hence it is impossible
to output with different probabilities at those point as δ → 0. The next lemma formalizes that
intuition.

Lemma 1.2. If f : S ⊆ (0, 1)→ [0, 1] admits a Bernoulli factory, then f is continuous in S.

Proof. Fix a point a ∈ S. We want to show that for every ε > 0, there is δ such that if |p− a| < δ
then |f(p)− f(a)| < ε.

To show that, let N be a random variable showing the number of coins flipped before the output
if the decision tree is executed using an a-coin (this is equal to the depth of the output node reached
in the tree). Now, fix n such that Pa[N > n] < ε/4. Now, for each tuple x = (x1, . . . , xn) ∈ {0, 1}n
we define function F (x) ∈ {0, 1, ∅} indicating whether the decision tree outputs 0, 1 or doesn’t yet
terminate after seeing inputs x1, . . . , xn. Also, let X = (X1, . . . , Xn) be the random output of the
coins. With that, we can re-write Pa[N > n] < ε/4 as:∑

x∈{0,1}n;F (x)=∅

Pa[X = x] ≤ ε

4
(1)

Now, choose δ small enough such that the total variation distance between the sequences X =
(X1, . . . , Xn) generated under p and a is at most ε/3 for any |p− a| < δ. More formally:∑

x∈{0,1}n
|Pa[X = x]− Pp[X = x]| < ε

4
,∀p ∈ (a− δ, a+ δ) (2)

Now, we can bound f(a) and f(p) for |p− a| < δ as follows:∣∣∣∣∣∣f(a)−
∑

x∈{0,1}n;F (x)∈{0,1}

F (x)Pa[X = x]

∣∣∣∣∣∣ ≤
∑

x∈{0,1}n;F (x)=∅

Pa[X = x] <
ε

4

and similarly:∣∣∣∣∣∣f(p)−
∑

x∈{0,1}n;F (x)∈{0,1}

F (x)Pp[X = x]

∣∣∣∣∣∣ ≤
∑

x∈{0,1}n;F (x)=∅

Pp[X = x] <
ε

2

5

where the last bound follows from combining equations (1) and (2). Now, taking it all together,
we have:

|f(a)− f(p)| ≤

∣∣∣∣∣∣
∑

x∈{0,1}n;F (x)∈{0,1}

F (x)(Pa[X = x]− Pp[X = x])

∣∣∣∣∣∣+
3ε

4
<
ε

4
+

3ε

4
= ε

Example 1.3. The second example in the figure of a function for which we can’t construct a
factory is the function f(p) = 1 − |1− 2p|. The important fact is that f(1

2) = 1 but f(p′) < 1 for
some other p′ (e.g. p′ = 1

3). Since the factory can output zero when executed with a (1/3)-coin,
there must be a node outputting zero in the tree that is reached given a finite sequence of coin
flips: (x1, . . . , xn) ∈ {0, 1}n. But the same sequence happens with positive probability when we
execute the factory with a (1/2)-coin. Hence when p = 1/2 the factory must output 0 with positive
probability, contradicting the fact that f(1

2) = 1.
In particular this means that if f is implementable by a factory and f(p) ∈ {0, 1} for some

p ∈ (0, 1), then f must be the constant function. The next lemma formalized this discussion.

Lemma 1.4. If f : S ⊆ (0, 1)→ [0, 1] is implementable by a Bernoulli factory and is not constant,
then it must be polynomially bounded, i.e., exists n ∈ Z+ such that:

min(f(p), 1− f(p)) ≥ min(p, 1− p)n

Proof. If f is not constant, then a factory for f needs to contain at least one node outputting 0
and one node outputting 1. Let n1 be the depth of some node outputting 1. In the path to that
node, we take a1 1-edges and b1 0-edges with a1 + b1 = n1. So:

f(p) ≥ pa1(1− p)b1 ≥ min(p, 1− p)n1

If we define n0, a0 and b0 similarly for some node outputting 0 we have:

1− f(p) ≥ pa0(1− p)b0 ≥ min(p, 1− p)n0

Hence the statement holds for n = max(n0, n1).

1.2 Sufficient Conditions

Those two conditions (continuity and polynomially-boundedness) turn out to be (essentially) suffi-
cient as well. In other words, any continuous function we can draw that is between min(p, 1− p)n
and 1−min(p, 1− p)n for some n (shaded region below) can be implemented.

6

We will add the following technical definition: consider a continuous function f : S ⊆ (0, 1)→
[0, 1] and let S̄ be the (topological) closure of S. We say that f is an extensible continuous function
if there is a function f̃ : S̄ → [0, 1] such that f(x) = f̃(x) for all x ∈ S. Note that the function in
the previous open problem in continuous on (0, 1) but not extensible continuous. Another example
is a function f : (0, 1/2) ∪ (1/2, 1)→ [0, 1] that is piecewise constant in (0, 1/2) and (1/2, 1). This
function is again continuous in its domain, but can’t be extended continuously to the closure [0, 1].

An important property for us that is that extensible continuous function have the no-zigzag
property: given any a < b and any polynomial g(x) there are at most finitely pairs (xi, yi) with
x1 < y1 < x2 < y2 < x3 < y3 < . . . such that h(xi) = a and h(yi) = b for function h(x) =
f(x) + g(x).

Theorem 1.5. Let f : S ⊆ (0, 1) → (0, 1) that is an extensible continuous and polynomially
bounded function. Then there exists a Bernoulli factory implementing f .

A complete proof will be added in the next version. The following example is a nice application
of the previous theorem:

Example 1.6 (Sum of two coins). Given two coins with biases p and q where p and q are unknown
but we are promised that p + q < 1 − ε for some small but positive constant ε (e.g. ε = 0.0001),
design a factory for a coin of bias p+ q.

The solution is as follows: first we design a factory that samples from a coin of bias 1
2(p + q).

This is easy to do: with probability half, sample from the p-coin and output its result. With half
probability, do the same for the q-coin.

Now, consider a factory for the function f(x) = min(2x, 1 − ε). Notice that f is continuous,
Lipschitz (and hence no-zigzag) and polynomially-bounded, so a factory exists. Using this factory
on the 1

2(p+ q)-coin, we obtain a sample from the (p+ q)-coin.

1.3 Fast Simulation

Theorem 1.5 guarantees that essentially any function we can hope to implement is implementable.
However, it says nothing about how efficiently this can be done. By efficiency we mean: how many
times do we need to flip the p-coin until we can decide the output of the f(p)-coin.

To make this more precise, fix a Bernoulli factory and define N to be the random variable
denoting how many coins are flipped until we output. In other words, if we execute the factory,
what is the depth of the output node we reach.

Example 1.7. To give one example, consider the factory for f(p) = 1/2 in Example 0.2. With
probability 2p(1−p) we output after the first 2 coin flips. With remaining probability (p2 +(1−p2))
we retry. This means that:

Pp[N = 2k] = [p2 + (1− p2)]k−12p(1− p) for k = 1, 2, ...

In particular, N has finite expectation for each p ∈ (0, 1):

Ep[N] =
p2 + (1− p2)

p(1− p)
<∞ for p ∈ (0, 1)

The only guarantee given by the construction in Theorem 1.5 is that N <∞ almost surely. We
don’t even know if Ep[N] < ∞ for example. In the next lemma (due to Nacu and Peres) we will

7

show that the expected number of coin flips is Ep[N] is tied to the derivatives of f . In particular, a
function that is continuous but not Lipschitz continuoius must be implementable with Ep[N] =∞
at certain points.

Lemma 1.8. If a function f admits a Bernoulli factory on a closed interval I ⊆ (ε, 1 − ε) and
supp∈I Ep[N] = C <∞ then function f must be (C/ε)-Lipschitz.

Proof. Define fn(p) = Pp(F = 1 and N = n), i.e., the probability that the factory outputs 1 after
exactly n coin flips of a p-coin. Observe that f(p) =

∑∞
n=0 fn(p) and that fn(p) can be obtained

by summing over all nodes outputting 1 at level n of the decision tree the probability of reaching
that node, which is pk(1− p)n−k for some k. Hence, fn(p) is a Bernstein polynomial of the type:

fn(p) =

n∑
k=0

ak,np
k(1− p)n−k

Derivating it, we obtain:

f ′n(p) =
n∑
k=0

ak,n[kpk−1(1− p)n−k − (n− k)pk(1− p)n−k−1]

Hence:

|f ′n(p)| ≤
n∑
k=0

ak,n[kpk−1(1− p)n−k + (n− k)pk(1− p)n−k−1]

≤
n∑
k=0

ak,n[kpk−1(1− p)n−k(p/ε) + (n− k)pk(1− p)n−k−1((1− p)/ε)]

= nfn(p)/ε

Now, we are ready to bound the Lipschitz constant. Given two points p, q ∈ I we have that:

|f(q)− f(p)| ≤
∞∑
n=0

|fn(p)− fn(q)| ≤
∞∑
n=0

∫ q

p
|f ′n(x)|dx ≤

∞∑
n=0

n

∫ q

p

fn(x)

ε
dx

In the last expression we have the term
∑∞

n=0 nfn(p) which we can relate to N as follows:

∞∑
n=0

nfn(p) =

∞∑
n=0

nPp(F = 1, N = n) ≤
∞∑
n=0

nPp(N = n) = Ep[N] ≤ C

The two last expressions together imply that |f(q)− f(p)| ≤ |p− q| · C/ε as desired.

The lemma now allows us to exhibit a function that admits a Bernoulli factory but must
necessarily have unbounded Ep[N]. For example, consider:

f(p) =

1

4
, p ≤ 1

4

1

4
+

1

2

√
2x− 1

2
,

1

4
≤ p ≤ 3

4
3

4
, p ≥ 3

4

8

The function has essentially a copy of
√
x in the interval [1/4, 3/4] and hence it is not Lipschitz

since its derivative blows up at p = 1/4 From the previous theorem, we can only guarantee that
supp∈[1/4−ε,1/4+ε] Ep[N] = ∞ for any ε > 0. Can we argue that the expectation is unbounded
exactly at p = 1/4?

Open Problem 1.1. In the previous example, is Ep[N] =∞ for p = 1/4 ?

The function f(x) =
√
x is very interesting. We know that we can construct a factory by

Theorem 1.5. In fact, Mossel and Peres construct an explicit factory for it, but the expectation is
not bounded. Nacu and Peres ask the following question:

Open Problem 1.2. Is there a Bernoulli factory for f(p) =
√
p defined for p ∈ (0, 1) such that

Ep[N] <∞ for all p ∈ (0, 1)?

Above, we saw how to related the Lipschitzness of the f to the expected number of coin flips.
Similarly, we can realated the analyticity of f to the properties of the tail of N . Nacu and Peres
say that a Bernoulli factory is fast if N has an exponential tail, i.e., if for every p there is a constant
r(p) < 1 such that:

Pp(N ≤ n) ≤ O(r(p)n)

They prove that a function f(p) admits a fast Bernoulli factory iff it is real-analytic, i.e., if for
every point p in the domain of f the Taylor series around p converges on a neighborhood of p.

A special case of real-analytic functions are rational functions, i.e. function of the type f(p) =
a(p)/b(p) for polynomials a(p) and b(p). Mossel and Peres show that those functions admit fast
factories with a particularly nice structure, which we will discuss in the next section.

2 Multiple Coins and Dice

So far we considered with a single p-coin. We will now consider we have access to many p-coins or
to a dice. A dice is a random variable X with values in [n] := {1, 2, . . . , n}. It is represented by a
vector p in the simplex ∆n := {p ∈ [0, 1]n;

∑n
i=1 pi = 1} such that P[X = i] = p.

2.1 Bernoulli Race

Our first observation is that having a p-dice is equivalent to having n coins with biases p1, . . . , pn.
One direction is obvious: if we have a dice we can simulate a pi-coin by tossing the dice and
outputting 1 if X = i and outputting zero otherwise.

For the other direction, we will use a procedure known as the Bernoulli Race. Given coins with
biases p1, . . . , pn we want to sample from a dice such that P(X = i) = pi/(p1 + . . . + pn). The
procedure is as follows: choose a i ∈ [n] uniformly at random and flip the pi-coin. If it comes up 1,
then output X = i. Otherwise, retry.

To see why P(X = i) is proportional to pi, first compute the probability of retry. We have that
P(retry) = 1−

∑n
j=1

pj
n . Now, the probability that we output i is the probability we output it right

away after retrying k times for k = 0, 1, . . .:

P(X = i) =
pi
n

∞∑
k=0

1−
n∑
j=1

pj
n

k

=
pi∑n
j=1 pj

9

2.2 Pólya’s Theorem

Our next goal is to design a factory for rational functions. The main ingredient is to understand
how polynomials that are positive on the (0, 1) interval (and more generally on the opens simplex
in higher dimensions) looks like. This is given by the following theorem by Pólya which is a type
of Positivstellensatz.

Theorem 2.1 (Pólya). Let f(x1, . . . , xn) be an homogeneous polynomial with real coefficients such
that f(x) > 0 for all points in {x ∈ Rn;xi ≥ 0,∀i and

∑
i xi > 0}. Then there is an integer m ≥ 0

such that all the coefficients of the polynomial (
∑

i xi)
mf(x) are non-negative.

Proof. It will be useful to introduce some notation. Let α = (a1, . . . , an) be a multi-index and
xα = xa11 x

a2
2 . . . xann . Also define |α| = a1 + . . .+ an and α! = a1!a2! . . . an!. Given two multi-indices

α and β we say α ≥ β if the inequality holds componentwise. Otherwise we write α 6≥ β. With
this notation, we can write f of degree d as:

f(x) =
∑
|α|=d

fα
xα

α!

for some coefficients fα. Now, define the following for a variable xi and an index ai:

P (xi, ai, t) =
xi(xi − t)(xi − 2t) . . . (xi − (ai − 1)t)

ai!

And with some abuse of notation, for the variable vector x and a multi-index α define:

P (x, α, t) =

n∏
i=1

P (xi, ai, t)

And finally extend f as follows:

F (x, t) =
∑
|α|=d

fαP (x, α, t)

such that F (x, 0) = f(x).

Compactness argument : Let ∆ = {x ∈ Rn≥0;
∑

i xi = 1} be the simplex and µ = minx∈∆ f(x) > 0.
By the fact that f is strictly positive on the orthant and ∆ is compact, its minimum must also be
strictly positive. Since F (x, t) is continuous, there is some ε for which:

min
x∈∆

F (x, t) ≥ µ

2
, ∀t ∈ [0, ε]

Newton’s binomial formula: Now, we can use Newton’s binomial formula to write:(∑
i

xi

)m
= m! ·

∑
|β|=m

xβ

β!

Combining with f we have:(∑
i

xi

)m
f(x) = m! ·

∑
|α|=d

∑
|β|=m

xα+β

α!β!
= m! ·

∑
|γ|=m+d

xγ

γ!

∑
α,β;α+β=γ

fα
γ!

α!β!

10

Let’s focus on the last term. For each fixed γ observe that:∑
α,β;α+β=γ

fα
γ!

α!β!
=
∑
α≤γ

fα
γ!

α!(γ − α)!
=
∑
α≤γ

fα · P (γ, α, 1) =
∑
α

fα · P (γ, α, 1) = F (γ, 1)

where the second inequality follows from the fact that P (x, α, t) becomes a product of binomial
coefficients when x is an integer and t = 1. The third inequality follows from that fact that
P (γ, α, 1) = 0 whenever α 6≤ γ since it has at least one index for which αi ≥ γi + 1 and hence one
of the terms in the numerator of P (γi, αi, 1) will be zero.

If we put the last two display equations together and note that F (x, t) is also d-homogeneous,
we have:

(∑
i

xi

)m
f(x) = m! ·

∑
|γ|=m+d

F (γ, 1)
xγ

γ!
= m!(m+ d)d ·

∑
|γ|=m+d

F

(
γ

m+ d
,

1

m+ d

)
xγ

γ!

Since |γ| = m + d we have that γ/(m + d) ∈ ∆. Now, for large enough m we have that

1/(m+ d) < ε and so F
(

γ
m+d ,

1
m+d

)
> 0 for all γ. Therefore, all coefficients in the right hand side

are non-negative.

The previous theorem requires positivity on the closed positive orthant. For our purposes, it
will be convenient to work on the open positive orthant. Note that while the previous theorem has
conditions xi ≥ 0 the lemma below asks for xi > 0.

Corollary 2.2. Let f(x, y) be an homogeneous polynomial with real coefficients such that f(x, y) >
0 for all points in {(x, y) ∈ R2;x > 0, y > 0}. Then there is an integer m ≥ 0 such that all
coefficients of (x+ y)mf(x) are non-negative.

Proof. Define g(p) = f(p, 1− p). If n = degree(f), then:

f(x, y) = (x+ y)n · f
(

x

x+ y
,

y

x+ y

)
= (x+ y)n · g

(
x

x+ y

)
If g(0) = 0 then g(p) must be divisible by p. Similarly if g(1) = 0 then g(p) must be divisible by
1− p. So we can re-write:

g(p) = pa(1− p)bh(p)

where for integers a, b ≥ 0 and a polynomial h(p) that is strictly positive on [0, 1]. Note that h(p) is
strictly positive for p ∈ (0, 1) since h(p) = g(a)/(pa(1− p)b). It is strictly positive for p = 0, 1 since
it is non-zero (since we removed p and 1− p factors) and it is continuous since it is a polynomial.
Hence, we can write:

f(x, y) = xaybH(x, y)

for some homogeneous polynomial H(x, y) satisfying the conditions of Pólya’s Theorem.

Polya’s Theorem (Theorem 2.1) is about homogeneous polynomials that are strictly positive
in the closed positive orthant Rn≥0 \ 0. For n = 2 variables, we showed in Corollary 2.2 that it is

enough to ask for it to be strictly positive on the open positive orthant R2
>0. For n > 2. however,

the result breaks if we only ask for positivity in the open positive orthant as shown in the next
example (which is based on a suggestion by Jon Schneider).

11

Example 2.3. We will exhibit a polynomial g(x, y, z) such that g(x, y, z) > 0 whenever (x, y, z) ∈
R3
>0 but (x+ y + z)mg(x, y, z) has negative coefficients for all non-negative integers m.

We start by defining an auxiliary polynomial:

f(x, y, z) = x3 + y3 + z3 − 3xyz

By the AM-GM inequality, we have that f(x, y, z) ≥ 0 for (x, y, z) ∈ R3
>0 with equality holding

only when x = y = z. Now, we can defined:

g(x, y, z) = f(x, x+ y, x+ z)

Note that for any (x, y, z) ∈ R3
>0 we have (x, x+ y, x+ z) ∈ R3

>0 and we necessarily have x 6= x+ y.
Hence:

g(x, y, z) > 0, ∀(x, y, z) ∈ R3
>0

Now, we will show that for all integers m ≥ 0 the polynomial (x+ y+ z)mg(x, y, z) has at least
one negative coefficient. First, let’s expand g.

g(x, y, z) = 3xy2 + y3 − 3xyz + 3xz2 + z3

The polynomial g is homogeneous of degree 3. Observe that the term −3xyz is the only one
where both x and y have degree at most 1. In every other term either y or z appears with a power
at least 2. For a given m, the degree of (x + y + z)mg(x, y, z) is m + 3. The coefficient of the
monomial xm+1yz in (x+ y + z)mg(x, y, z) must be −3 since it can only be formed by multiplying
xm in the first part with −3xyz. Any other monomial in the second part will lead to a term with
degree at least two for y or z.

2.3 Factories for Rational Functions

We are now ready to describe a factory for any rational function f : (0, 1) → (0, 1). A rational
function can be written as:

f(p) =
a(p)

b(p)
for a(p) =

k∑
i=0

aip
i and b(p) =

k∑
i=0

bip
i

First observe that for the function f to be well defined on (0, 1) the function b(p) 6= 0 for any
p ∈ (0, 1) and hence it can’t change signs. Since we can always replace a(p) and b(p) by λa(p) and
λb(p) for any constant λ 6= 0 we can assume that b(p) > 0 and supp∈(0,1) b(p) < 1. Furthermore,
since 0 < f(p) < 1 we have:

0 < a(p) < b(p) < 1 for p ∈ (0, 1)

Therefore:
0 < b(p)− a(p) < 1 for p ∈ (0, 1)

Now, assume we can build a Bernoulli factory for a(p) and one for b(p) − a(p) we can simply
use a Bernoulli Race between the a(p)-coin and the (b(p)− a(p))-coin and output 1 whenever the
a(p) coin is chosen. This will output 1 with probability: a(p)/(a(p)+(b(p)−a(p))) = a(p) as desired.

All we need to do now is to design a factory for a(p) and b(p). This will be particularly nice
factory since it will be also finite:

12

Lemma 2.4. Let a(p) be a polynomial such that 0 < a(p) for p ∈ (0, 1). Then there is a constant
λ > 0 for which λa(p) admits a finite Bernoulli factory.

Proof. Define: A(x, y) =
∑k

i=0 aix
i(x + y)k−i such that a(p) = A(p, 1− p). Note that for x, y > 0

we have:

A(x, y) = (x+ y)k ·
k∑
i=0

ai

(
x

x+ y

)i
= (x+ y)k · a

(
x

x+ y

)
> 0

So we can apply Corollary 2.2 to write:

(x+ y)m ·A(x, y) =
∑
i

cix
aiybi

with ci ≥ 0, m, ai, bi ∈ Z+. Now, take λ such that λ
∑

i ci ≤ 1. Hence we can write:

λa(p) = λA(p, 1− p) =
∑
i

λcip
ai(1− p)bi

which is a Bernstein polynomial (Example 0.4) and therefore admits a finite factory.

Taking all those results together, we obtain that every rational function is implementable via a
Bernoulli race between two Bernstein polynomials. In particular, this factory has an exponential
tail.

13

	Necessary and sufficient conditions (Keane and O'Brien 1994)
	Necessary Conditions
	Sufficient Conditions
	Fast Simulation

	Multiple Coins and Dice
	Bernoulli Race
	Pólya's Theorem
	Factories for Rational Functions

