Gross Substitutes
Tutorial

Part I: Combinatorial structure and algorithms
(Renato Paes Leme, Google)

Part II: Economics and the boundaries of substitutability
(Inbal Talgam-Cohen, Hebrew University)
Three seemingly-independent problems
Three seemingly-independent problems

[Kelso-Crawford ’82] necessary /“sufficient” condition for price adjustment to converge

gross substitutes
Three seemingly-independent problems

[Kelso-Crawford '82] necessary /“sufficient” condition for price adjustment to converge

gross substitutes

[Dress-Wenzel '91] generalize Grassmann-Plucker relations

valuated matroids matroidal maps
Three seemingly-independent problems

- [Kelso-Crawford '82]
 necessary /“sufficient” condition for price adjustment to converge
gross substitutes

- [Dress-Wenzel '91]
 generalize Grassmann-Plucker relations
 valuated matroids
 matroidal maps

- [Murota-Shioura '99]
 generalize convexity to discrete domains
 M-discrete concave
Three seemingly-independent problems

[Kelso-Crawford '82] necessary /"sufficient" condition for price adjustment to converge gross substitutes

Discrete Convex Analysis

[Dress-Wenzel '91] generalize Grassmann-Plucker relations valuated matroids matroidal maps

[Murota-Shioura '99] generalize convexity to discrete domains M-discrete concave
Some notation to start

- Discrete sets of goods: \([n] = \{1, \ldots, n\}\)
- Valuation function \(v : 2^n \rightarrow \mathbb{R}\)
- Given prices \(p \in \mathbb{R}^n\) define \(v_p(S) = v(S) - p(S)\)
- Demand correspondence \(D(v; p) = \text{argmax}_S v_p(S)\)
- Demand oracle \(O_D(v, p) \in D(v; p)\)
- Value oracle \(O_V(v, S) = v(S)\)
- Marginals \(v(S|T) = v(S \cup T) - v(T)\)
Walrasian equilibrium

\[n \text{ goods} \]

\[m \text{ buyers} \]
Walrasian equilibrium

- Valuations $v_i : 2^N \rightarrow \mathbb{R}$

n goods

m buyers

v_1, v_2, v_3, v_4
Walrasian equilibrium

\[p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \]

\(n \) goods

\[v_1 \quad v_2 \quad v_3 \quad v_4 \]

\(m \) buyers

- Valuations \(v_i : 2^N \rightarrow \mathbb{R} \)
Walrasian equilibrium

- Valuations: $v_i : 2^N \rightarrow \mathbb{R}$
- Demands: $D(v_i, p) = \arg\max_{S \subseteq N} [v_i(S) - \sum_{i \in S} p_i]$
Walrasian equilibrium

- **Valuations**: \(v_i : 2^N \rightarrow \mathbb{R} \)
- **Demands**: \(D(v_i, p) = \text{argmax}_{S \subseteq N} \left[v_i(S) - \sum_{i \in S} p_i \right] \)
Walrasian equilibrium

- Valuations $v_i : 2^N \rightarrow \mathbb{R}$
- Demands $D(v_i, p) = \operatorname{argmax}_{S \subseteq N} [v_i(S) - \sum_{i \in S} p_i]$
Walrasian equilibrium

- Valuations $v_i : 2^N \rightarrow \mathbb{R}$
- Demands $D(v_i, p) = \arg\max_{S \subseteq N} [v_i(S) - \sum_{i \in S} p_i]$
Walrasian equilibrium

- Valuations $v_i : 2^N \to \mathbb{R}$
- Demands $D(v_i, p) = \text{argmax}_{S \subseteq N} [v_i(S) - \sum_{i \in S} p_i]$
Walrasian equilibrium

- Market equilibrium: prices $p \in \mathbb{R}^n$ s.t. $S_i \in D(v_i, p)$
 i.e. each good is demanded by exactly one buyer.

First Welfare Theorem: in equilibrium the welfare

$$\sum_i v_i(S_i)$$

is maximized.

(proof: LP duality)

When do equilibria exist ?

How do markets converge to equilibrium prices ?

How to compute a Walrasian equilibrium ?
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \not\in D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.

\[p^i_j = p_j \text{ if } j \in S_i \]
\[p^i_j = p_j + \epsilon \text{ if } j \not\in S_i \]
• Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
• While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.

Walrasian tatonnement
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p_i^i)$ assign $X_i \in D(v_i; p_i^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.

$S_1 = [n]$, $S_i = \emptyset$, and prices $p_j = 0$
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \not\in D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.

n goods

m buyers

$v_1 \quad v_2 \quad v_3 \quad v_4$

$p_j^i = p_j$ if $j \in S_i$
$p_j^i = p_j + \epsilon$ if $j \not\in S_i$
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$ to i and increase the prices in $X_i \setminus S_i$ by ϵ.

n goods

m buyers

$p^i_j = p_j$ if $j \in S_i$
$p^i_j = p_j + \epsilon$ if $j \notin S_i$
Walrasian tatonnement

- Initialize $S_1 = [n]$, $S_i = \emptyset$ and prices $p_j = 0$
- While there is $S_i \notin D(v_i, p^i)$ assign $X_i \in D(v_i; p^i)$
 to i and increase the prices in $X_i \setminus S_i$ by ϵ.
Walrasian tatonnement

• This process always ends, otherwise prices go to infinity.
• When it ends $S_i \in D(v_i; p^i)$
Walrasian tatonnement

- This process always ends, otherwise prices go to infinity.
- When it ends \(S_i \in D(v_i; p) \) in the limit \(\epsilon \to 0 \)
Walrasian tatonnement

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i; p)$ in the limit $\epsilon \to 0$
- What else?
Walrasian tatonnement

• This process always ends, otherwise prices go to infinity.
• When it ends $S_i \in D(v_i; p^i)$ in the limit $\epsilon \to 0$
• What else?
• The only condition left is that $\bigcup_i S_i = [n]$
• For that we need: $S_i \subseteq X_i \in D(v_i; p^i)$
Walrasian tatonnement

- This process always ends, otherwise prices go to infinity.
- When it ends $S_i \in D(v_i; p)$ in the limit $\epsilon \to 0$
- What else?
- The only condition left is that $\cup_i S_i = [n]$
- For that we need: $S_i \subseteq X_i \in D(v_i; p^i)$
- Definition: A valuation satisfied gross substitutes if for all prices $p \leq p'$ and $S \in D(v; p)$ there is $X \in D(v; p')$ s.t. $S \cap \{i; p_i = p'_i\} \subseteq X$
Walrasian tatonnement

- This process always ends, otherwise prices go to infinity.
- When it ends \(S_i \in D(v_i; p) \) in the limit \(\epsilon \to 0 \)
- What else?
- The only condition left is that \(\bigcup_i S_i = [n] \)
- For that we need: \(S_i \subseteq X_i \in D(v_i; p^i) \)
- Definition: A valuation satisfied gross substitutes if for all prices \(p \leq p' \) and \(S \in D(v; p) \) there is \(X \in D(v; p') \) s.t. \(S \cap \{ i; p_i = p'_i \} \subseteq X \)
- With the new definition, the algorithm always keeps a partition.
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions \(v(S) = \sum_{i \in S} v(i) \)
 - unit-demand \(v(S) = \max_{i \in S} v(i) \)
 - matching valuations \(v(S) = \max \) matching from \(S \)
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S') = \max_{i \in S} v(i)$
 - matching valuations $v(S') = \max$ matching from S
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions \(v(S) = \sum_{i \in S} v(i) \)
 - unit-demand \(v(S) = \max_{i \in S} v(i) \)
 - matching valuations \(v(S) = \max \) matching from \(S \)
Walrasian equilibrium

• Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
 • additive functions \(v(S) = \sum_{i \in S} v(i) \)
 • unit-demand \(v(S') = \max_{i \in S} v(i) \)
 • matching valuations \(v(S') = \max \) matching from \(S \)
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions \(v(S) = \sum_{i \in S} v(i) \)
 - unit-demand \(v(S) = \max_{i \in S} v(i) \)
 - matching valuations \(v(S) = \max \text{ matching from } S \)
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions $v(S) = \sum_{i \in S} v(i)$
 - unit-demand $v(S') = \max_{i \in S} v(i)$
 - matching valuations $v(S') = \max$ matching from S
 - matroid-matching
Walrasian equilibrium

• Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

• Some examples of GS:
 • additive functions \(v(S) = \sum_{i \in S} v(i) \)
 • unit-demand \(v(S') = \max_{i \in S} v(i) \)
 • matching valuations \(v(S') = \max \) matching from \(S \)
 • matroid-matching

\[
v(S) = \sum_{i \in S} v(i)
\]

\[
v(S') = \max_{i \in S} v(i)
\]

\[
v(S') = \max \text{ matching from } S
\]

\[
\text{matroid}
\]
Walrasian equilibrium

- Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

- Some examples of GS:
 - additive functions \(v(S) = \sum_{i \in S} v(i) \)
 - unit-demand \(v(S') = \max_{i \in S} v(i) \)
 - matching valuations \(v(S') = \max \text{ matching from } S \)
 - matroid-matching \(v(S') = \max \text{ matching from } S \)

Open: GS \(\neq \) matroid-matching
Walrasian equilibrium

• Theorem [Kelso-Crawford]: If all agents have GS valuations, then Walrasian equilibrium always exists.

• Theorem [Gul-Stachetti]: If a class C of valuations contains all unit-demand valuations and Walrasian equilibrium always exists then $C \subseteq GS$
Valuated Matroids

• Given vectors $v_1, \ldots, v_m \in \mathbb{Q}^n$ define

$$
\psi_p(v_1, \ldots, v_n) = n \text{ if } \det(v_1, \ldots, v_n) = p^{-n} \cdot \frac{a}{b}
$$

for p prime $a, b, p \in \mathbb{Z}$

• Question in algebra:

$$
\min_{v_i \in V} \psi_p(v_1, \ldots, v_n) \text{ s.t. } \det(v_1, \ldots, v_n) \neq 0
$$

• Solution is a greedy algorithm: start with any non-degenerate set and go over each items and replace it by the one that minimizes $\psi_p(v_1, \ldots, v_n)$.

• [DW]: Grassmann-Plucker relations look like matroid cond
Valuated Matroids

- Definition: a function \(v : \binom{[n]}{k} \rightarrow \mathbb{R} \) is a \textbf{valuated matroid} if the “Greedy is optimal”.
Matroidal maps

- Definition: a function $\nu : 2^n \to \mathbb{R}$ is a matroidal map if for every $p \in \mathbb{R}^n$ a set in $D(\nu; p)$ can be obtained by the greedy algorithm: $S_0 = \emptyset$ and
 $$S_t = S_{t-1} \cup \{i_t\} \text{ for } i_t \in \arg\max_i \nu_p(i|S_t)$$
Matroidal maps

• Definition: a function \(v : 2^{[n]} \rightarrow \mathbb{R} \) is a matroidal map if for every \(p \in \mathbb{R}^n \) a set in \(D(v; p) \) can be obtained by the greedy algorithm: \(S_0 = \emptyset \) and
\[
S_t = S_{t-1} \cup \{i_t\} \text{ for } i_t \in \arg\max_i v_p(i|S_t)
\]

• Definition: a subset system \(\mathcal{M} \subseteq 2^{[n]} \) is a matroid if for every \(p \in \mathbb{R}^n \) the problem \(\max_{S \in \mathcal{M}} p(S) \) can be solved by the greedy algorithm.
Discrete Concavity

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if for all $p \in \mathbb{R}^n$, a local minimum of $f_p(x) = f(x) - \langle p, x \rangle$ is a global minimum.

- Also, gradient descent converges for convex functions.

- We want to extend this notion to function in the hypercube: $v : 2^{[n]} \rightarrow \mathbb{R}$ (or lattice $v : \mathbb{Z}^{[n]} \rightarrow \mathbb{R}$ or other discrete sets such as the basis of a matroid)
Discrete Concavity

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for all $p \in \mathbb{R}^n$, a local minimum of $f_p(x) = f(x) - \langle p, x \rangle$ is a global minimum.

- Also, gradient descent converges for convex functions.

- We want to extend this notion to function in the hypercube: $\nu : 2^{[n]} \to \mathbb{R}$ (or lattice $\nu : \mathbb{Z}^{[n]} \to \mathbb{R}$ or other discrete sets such as the basis of a matroid)
Discrete Concavity

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for all $p \in \mathbb{R}^n$, a local minimum of $f_p(x) = f(x) - \langle p, x \rangle$ is a global minimum.

- Also, gradient descent converges for convex functions.

- We want to extend this notion to function in the hypercube: $\nu : 2^n \to \mathbb{R}$ (or lattice $\nu : \mathbb{Z}^n \to \mathbb{R}$ or other discrete sets such as the basis of a matroid)
Discrete Concavity

• A function $v : 2^{[n]} \rightarrow \mathbb{R}$ is discrete concave if for all $p \in \mathbb{R}^n$ all local minima of v_p are global minima. I.e.

\[
 v_p(S) \geq v_p(S \cup i), \forall i \notin S \\
 v_p(S) \geq v_p(S \setminus j), \forall j \in S \\
 v_p(S) \geq v_p(S \cup i \setminus j), \forall i \notin S, j \in S
\]

then $v_p(S) \geq v_p(T), \forall T \subseteq [n]$. In particular local search always converges.

• [Murota ’96] M-concave (generalize valuated matroids)
[Murota-Shioura ’99] M^\cap-concave functions
Equivalence

- [Fujishige-Yang] A function $\nu : 2^{[n]} \to \mathbb{R}$ is gross substitutes iff it is a matroidal map iff it is discrete concave.

[Kelso-Crawford '82] necessary /“sufficient” condition for price adjustment to converge gross substitutes

[Murota-Shioura '99] generalize convexity to discrete domains M-discrete concave

[Dress-Wenzel '91] generalize Grassmann-Plucker relations valuated matroids matroidal maps
Equivalence

- [Fujishige-Yang] A function \(v : 2^n \rightarrow \mathbb{R} \) is gross substitutes iff it is a matroidal map iff it is discrete concave.

- [Kelso-Crawford '82] necessary /“sufficient” condition for price adjustment to converge gross substitutes

- [Murota-Shioura '99] generalize convexity to discrete domains M-discrete concave

- [Dress-Wenzel '91] generalize Grassmann-Plucker relations valuated matroids matroidal maps

- In particular \(S \in D(v; p) \) in poly-time.
Equivalence

- [Fujishige-Yang] A function $\nu : 2^n \rightarrow \mathbb{R}$ is gross substitutes iff it is a matroidal map iff it is discrete concave.

- [Kelso-Crawford '82] necessary /“sufficient” condition for price adjustment to converge gross substitutes

- [Murota-Shioura '99] generalize convexity to discrete domains M-discrete concave

- [Dress-Wenzel '91] generalize Grassmann-Plucker relations valued matroids matroidal maps

- In particular $S \in D(\nu; p)$ in poly-time.
- Proof through discrete differential equations
Discrete Differential Equations

- Given a function $v : 2^{[n]} \rightarrow \mathbb{R}$ we define the discrete derivative with respect to $i \in [n]$ as the function $\partial_i v : 2^{[n]} \setminus i \rightarrow \mathbb{R}$ which is given by:

$$\partial_i v(S) = v(S \cup i) - v(S)$$

(another name for the marginal)
Discrete Differential Equations

• Given a function $v : 2^{[n]} \rightarrow \mathbb{R}$ we define the discrete derivative with respect to $i \in [n]$ as the function $\partial_i v : 2^{[n]\setminus i} \rightarrow \mathbb{R}$ which is given by:

$$\partial_i v(S) = v(S \cup i) - v(S)$$

(another name for the marginal)

• If we apply it twice we get:

$$\partial_{ij} v(S) := \partial_j \partial_i v(S) = v(S \cup ij) - v(S \cup i) - v(S \cup j) + v(S)$$

• Submodularity: $\partial_{ij} v(S) \leq 0$
Discrete Differential Equations

• [Reijnierse, Gellekom, Potters] A function $v : 2^n \to \mathbb{R}$ is in gross substitutes iff it satisfies:

$$\partial_{ij}v(S) \leq \max(\partial_{ik}v(S), \partial_{kj}v(S)) \leq 0$$

condition on the discrete Hessian.

• Idea: A function is in GS iff there is not price such that:

$$D(v; p) = \{S, S \cup ij\} \text{ or } D(v; p) = \{S \cup k, S \cup ij\}$$

If v is not submodular, we can construct a price of the first type. If $\partial_{ij}v(S) > \max(\partial_{ik}v(S), \partial_{kj}v(S))$ then we can find a certificate of the second type.
Algorithmic Problems

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \rightarrow \mathbb{R}$ find a partition S_1, \ldots, S_m of $[n]$ maximizing $\sum_i v_i(S_i)$

- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.

- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \text{argmax}_S v_i(S) - p(S)$
Algorithmic Problems

- Techniques:
 - Tatonnement
 - Linear Programming
 - Gradient Descent
 - Cutting Plane Methods
 - Combinatorial Algorithms
Linear Programming

• [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\max & \quad \sum_i \nu_i(S)x_{iS} \\
\text{s.t.} & \quad \sum_S x_{iS} = 1, \forall i \in [m] \\
& \quad \sum_i \sum_{S \in j} x_{iS} = 1, \forall j \in [n] \\
& \quad x_{iS} \in \{0, 1\}
\end{align*}
\]
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\max & \sum_i v_i(S)x_{iS} \\
\sum_S x_{iS} &= 1, \forall i \in [m] \\
\sum_i \sum_{S \ni j} x_{iS} &= 1, \forall j \in [n] \\
x_{iS} &\in [0, 1]
\end{align*}
\]
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max } & \sum_i v_i(S) x_{iS} \\
\text{subject to } & \sum_S x_{iS} = 1, \forall i \in [m] \\
& \sum_i \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\
x_{iS} & \in [0, 1]
\end{align*}
\]

primal

\[
\begin{align*}
\text{min } & \sum_i u_i + \sum_j p_j \\
& u_i \geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
p_j & \geq 0, u_i \geq 0
\end{align*}
\]

dual
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max} & \sum_{i} v_i(S)x_iS \\
\sum_{S} x_iS &= 1, \forall i \in [m] \\
\sum_{i} \sum_{S \ni j} x_iS &= 1, \forall j \in [n] \\
x_iS &\in [0,1]
\end{align*}
\]

primal

\[
\begin{align*}
\text{min} & \sum_{i} u_i + \sum_{j} p_j \\
u_i &\geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
p_j &\geq 0, u_i \geq 0
\end{align*}
\]

dual

- For GS, the IP is integral: \(W_{\text{IP}} \leq W_{\text{LP}} = W_{D-LP} \)
- Consider a Walrasian equilibrium and \(p \) the Walrasian prices and \(u \) the agent utilities. Then it is a solution to the dual, so: \(W_{D-LP} \leq W_{\text{eq}} = W_{\text{IP}} \)
Linear Programming

• [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max } & \sum_i v_i(S) x_{iS} \\
\text{s.t. } & \sum_S x_{iS} = 1, \forall i \in [m] \\
& \sum_i \sum_{S \supset j} x_{iS} = 1, \forall j \in [n] \\
& x_{iS} \in [0, 1]
\end{align*}
\]

primal

\[
\begin{align*}
\text{min } & \sum_i u_i + \sum_j p_j \\
\text{s.t. } & u_i \geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
& p_j \geq 0, u_i \geq 0
\end{align*}
\]

dual
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max } & \sum_i v_i(S)x_{iS} \\
\text{s.t. } & \sum_S x_{iS} = 1, \forall i \in [m] \\
& \sum_i \sum_{S \ni j} x_{iS} = 1, \forall j \in [n] \\
& x_{iS} \in [0, 1]
\end{align*}
\]

primal

\[
\begin{align*}
\text{min } & \sum_i u_i + \sum_j p_j \\
\text{s.t. } & u_i \geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
& p_j \geq 0, u_i \geq 0
\end{align*}
\]

dual

- In general, Walrasian equilibrium exists iff LP is integral.
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max} & \quad \sum_i v_i(S)x_iS \\
\sum_S x_iS &= 1, \forall i \in [m] \\
\sum_i \sum_{S \ni j} x_iS &= 1, \forall j \in [n] \\
x_iS &\in [0, 1] \\
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_i u_i + \sum_j p_j \\
u_i &\geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
p_j &\geq 0, u_i \geq 0 \\
\end{align*}
\]

primal \quad \text{dual}

- In general, Walrasian equilibrium exists iff LP is integral.

- Separation oracle for the dual: \(u_i \geq \max_S v_i(S) - p(S) \)

is the demand oracle problem.
Linear Programming

- [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max } & \sum_i v_i(S)x_{iS} \\
\sum_S x_{iS} &= 1, \forall i \in [m] \\
\sum_i \sum_{S \ni j} x_{iS} &= 1, \forall j \in [n] \\
x_{iS} &\in [0, 1]
\end{align*}
\]

primal

\[
\begin{align*}
\text{min } & \sum_i u_i + \sum_j p_j \\
u_i &\geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
p_j &\geq 0, u_i \geq 0
\end{align*}
\]

dual
Linear Programming

• [Nisan-Segal] Formulate this problem as an LP:

\[
\begin{align*}
\text{max} & \quad \sum_i v_i(S) x_i S \\
\sum_S x_i S &= 1, \forall i \in [m] \\
\sum_i \sum_{S \ni j} x_i S &= 1, \forall j \in [n] \\
x_i S &\in [0, 1]
\end{align*}
\]
primal

\[
\begin{align*}
\text{min} & \quad \sum_i u_i + \sum_j p_j \\
u_i &\geq v_i(S) - \sum_{j \in S} p_j \forall i, S \\
p_j &\geq 0, u_i \geq 0
\end{align*}
\]
dual

• Walrasian equilibrium exists + demand oracle in poly-time
 = Welfare problem in poly-time

• [Roughgarden, Talgam-Cohen] Use complexity theory to show non-existence of equilibrium, e.g. budget additive.
Gradient Descent

- We can Lagrangify the dual constraints and obtain the following convex potential function:

\[\phi(p) = \sum_i \max_S [v_i(S) - p(S)] + \sum_j p_j \]

- Theorem: the set of Walrasian prices (when they exist) are the set of minimizers of \(\phi \).

\[\partial_j \phi(p) = 1 - \sum_i 1[j \in S_i]; S_i \in D(v_i; p) \]

- Gradient descent: increase price of over-demanded items and decrease price of over-demanded items.
- Tatonnement: \(p_j \leftarrow p_j - \epsilon \cdot \text{sgn} \partial_j \phi(p) \)
Comparing Methods

<table>
<thead>
<tr>
<th>method</th>
<th>oracle</th>
<th>running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to access the input
How to access the input

Value oracle:
given \(i \) and \(S \):
query \(v_i(S) \).
How to access the input

Value oracle:
given \(i \) and \(S \):
query \(v_i(S) \).

Demand oracle:
given \(i \) and \(p \):
query \(S \in D(v_i, p) \).
How to access the input

Value oracle: given i and S: query $v_i(S)$.

Demand oracle: given i and p: query $S \in D(v_i, p)$

Aggregate Demand: given p, query.
$\sum_i S_i; S_i \in D(v_i, p)$
Comparing Methods

<table>
<thead>
<tr>
<th>method</th>
<th>oracle</th>
<th>running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
</tbody>
</table>
Comparing Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Oracle</th>
<th>Running-Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
<tr>
<td>linear program</td>
<td>demand/value</td>
<td>weakly-poly</td>
</tr>
</tbody>
</table>
Comparing Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Oracle</th>
<th>Running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
<tr>
<td>linear program</td>
<td>demand/value</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>cutting plane</td>
<td>aggreg demand</td>
<td>weakly-poly</td>
</tr>
</tbody>
</table>

- **[PL-Wong]**: We can compute an exact equilibrium with $\tilde{O}(n)$ calls to an aggregate demand oracle.
Comparing Methods

<table>
<thead>
<tr>
<th>method</th>
<th>oracle</th>
<th>running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
<tr>
<td>linear program</td>
<td>demand/value</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>cutting plane</td>
<td>aggreg demand</td>
<td>weakly-poly</td>
</tr>
</tbody>
</table>
Comparing Methods

<table>
<thead>
<tr>
<th>method</th>
<th>oracle</th>
<th>running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
<tr>
<td>linear program</td>
<td>demand/value</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>cutting plane</td>
<td>aggreg demand</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>combinatorial</td>
<td>value</td>
<td>strongly-poly</td>
</tr>
</tbody>
</table>
Comparing Methods

<table>
<thead>
<tr>
<th>method</th>
<th>oracle</th>
<th>running-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>tatonnement/GD</td>
<td>aggreg demand</td>
<td>pseudo-poly</td>
</tr>
<tr>
<td>linear program</td>
<td>demand/value</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>cutting plane</td>
<td>aggreg demand</td>
<td>weakly-poly</td>
</tr>
<tr>
<td>combinatorial</td>
<td>value</td>
<td>strongly-poly</td>
</tr>
</tbody>
</table>

- [Murota]: We can compute an exact equilibrium for gross substitutes in $\tilde{O}((mn + n^3)T_V)$ time.
Algorithmic Problems

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \rightarrow \mathbb{R}$ find a partition S_1, \ldots, S_m of $[n]$ maximizing $\sum_i v_i(S_i)$

- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.

- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \arg\max_S v_i(S) - p(S)$
Computing Walrasian prices

- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \arg\max_S v_i(S) - p(S)$

- For GS, we only need to check that no buyer want to add, remove or swap items.
Computing Walrasian prices

- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \text{argmax}_S v_i(S) - p(S)$

- For GS, we only need to check that no buyer want to add, remove or swap items.
Computing Walrasian prices

- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \text{argmax}_S v_i(S) - p(S)$

- For GS, we only need to check that no buyer want to add, remove or swap items.

\[w_{jk} = v_i(S_i) - v_i(S_i \cup k \setminus j) \]
Computing Walrasian prices

• Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \arg\max_S v_i(S) - p(S)$

• For GS, we only need to check that no buyer want to add, remove or swap items.

$$w_{\phi_i k} = v_i(S_i) - v_i(S_i \cup k)$$
Computing Walrasian prices

- Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \text{argmax}_S v_i(S) - p(S)$
- For GS, we only need to check that no buyer want to add, remove or swap items.

$$w_{j\phi_i} = v_i(S_i) - v_i(S_i \setminus j)$$
Computing Walrasian prices

- Given a partition S_1,\ldots,S_m we want to find prices such that $S_i \in \arg\max_S v_i(S) - p(S)$

- For GS, we only need to check that no buyer want to add, remove or swap items.

\[w_{\phi_i \phi_i'} = 0 \]
Computing Walrasian prices

• Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \text{argmax}_S v_i(S) - p(S)$

• For GS, we only need to check that no buyer want to add, remove or swap items.
Computing Walrasian prices

• Given a partition S_1, \ldots, S_m we want to find prices such that $S_i \in \arg\max_S v_i(S) - p(S)$

• For GS, we only need to check that no buyer want to add, remove or swap items.
Computing Walrasian prices

- Given a partition \(S_1, \ldots, S_m \) we want to find prices such that \(S_i \in \arg\max_S v_i(S) - p(S) \)

- For GS, we only need to check that no buyer want to add, remove or swap items.
Computing Walrasian prices

- Theorem: the allocation is optimal if the exchange graph has no negative cycle.
- Proof: if no negative cycles the distance is well defined. So let $p_j = -\text{dist}(\phi, j)$ then:

\[
\text{dist}(\phi, k) \leq \text{dist}(\phi, j) + w_{jk}
\]

\[
v_i(S_i) \geq v_i(S_i \cup k \setminus j) - p_k + p_j
\]

And since S_i is locally-opt then it is globally opt.

Conversely: Walrasian prices are a dual certificate showing that no negative cycles exist.
Computing Walrasian prices

• Theorem: the allocation is optimal if the exchange graph has no negative cycle.
• Proof: if no negative cycles the distance is well defined. So let $p_j = -\text{dist}(\phi, j)$ then:

$$\text{dist}(\phi, k) \leq \text{dist}(\phi, j) + w_{jk}$$

$$v_i(S_i) \geq v_i(S_i \cup k \setminus j) - p_k + p_j$$

And since S_i is locally-opt then it is globally opt. Conversely: Walrasian prices are a dual certificate showing that no negative cycles exist.

• Nice consequence: Walrasian prices form a lattice.
Algorithmic Problems

• Welfare problem: given m agents with \(v_1, \ldots, v_m : 2^{[n]} \to \mathbb{R} \)
 find a partition \(S_1, \ldots, S_m \) of \([n]\) maximizing \(\sum_i v_i(S_i) \)

• Verification problem: given a partition \(S_1, \ldots, S_m \)
 find whether it is optimal.

• Walrasian prices: given the optimal partition \((S_1^*, \ldots, S_m^*)\)
 find a price such that \(S_i^* \in \arg\max_S v_i(S) - p(S) \)
Algorithmic Problems

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^n \rightarrow \mathbb{R}$ find a partition S_1, \ldots, S_m of $[n]$ maximizing $\sum_i v_i(S_i)$

- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.

- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \arg\max_S v_i(S) - p(S)$
Algorithmic Problems

- Welfare problem: given m agents with $v_1, \ldots, v_m : 2^{[n]} \rightarrow \mathbb{R}$ find a partition S_1, \ldots, S_m of $[n]$ maximizing $\sum_i v_i(S_i)$

- Verification problem: given a partition S_1, \ldots, S_m find whether it is optimal.

- Walrasian prices: given the optimal partition (S_1^*, \ldots, S_m^*) find a price such that $S_i^* \in \arg\max_S v_i(S) - p(S)$
Incremental Algorithm

- For each $t = 1..n$ we will solve problem W_t to find the optimal allocation of items $[t] = \{1..t\}$ to m buyers.
- Problem W_1 is easy.
- Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate $p = \text{maximal Walrasian prices}$.

\[
w_{jk} = v_i(S_i) - v_i(S_i \cup k \setminus j) + p_k - p_j
\]
\[
w_{j\phi_i} = v_i(S_i) - v_i(S_i \setminus j) - p_j
\]
\[
w_{\phi_i k} = v_i(S_i) - v_i(S_i \cup k) + p_k
\]
Incremental Algorithm

- For each $t = 1..n$ we will solve problem W_t to find the optimal allocation of items $[t] = \{1..t\}$ to m buyers.
- Problem W_1 is easy.
- Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate $p = \text{maximal Walrasian prices}$.

![Diagram showing allocation process]
Incremental Algorithm

For each $t = 1 \ldots n$ we will solve problem W_t to find the optimal allocation of items $[t] = \{1 \ldots t\}$ to m buyers.

Problem W_1 is easy.

Assume now we solved W_t getting allocation S_1, \ldots, S_m and a certificate $p = \text{maximal Walrasian prices.}$
Incremental Algorithm

- Algorithm: compute shortest path from \(\phi \) to \(t + 1 \)
- Update allocation by implementing path swaps
Incremental Algorithm

- Algorithm: compute shortest path from ϕ to $t + 1$
- Update allocation by implementing path swaps
Incremental Algorithm

- Algorithm: compute shortest path from ϕ to $t + 1$
- Update allocation by implementing path swaps
Incremental Algorithm

- Algorithm: compute shortest path from ϕ to $t + 1$
- Update allocation by implementing path swaps

- Graph has $O(t^2 + mt)$ non-negative edges
- After n iterations of Dijkstra we get $\tilde{O}(n^3 + n^2m)$
Incremental Algorithm

- Proof that new allocation \(\tilde{S}_1 \ldots \tilde{S}_m \) is optimal
- Define the new prices \(\tilde{p}_j = - \text{dist}(\phi, j) \)
 - (1) New prices are also a certificate for \(S_1 \ldots S_m \)
 - (2) \(v_i(S_i) - \tilde{p}(S_i) = v_i(\tilde{S}_i) - \tilde{p}(\tilde{S}_i) \)
- Hence, \(\tilde{S}_1 \ldots \tilde{S}_m \) and \(\tilde{p} \) are Walrasian prices.
Closure properties

- If $v_1, v_2 \in GS$ we might not have $v_1 + v_2 \in GS$
Closure properties

- If \(v_1, v_2 \in GS \) we might not have \(v_1 + v_2 \in GS \).

- Some preserving operations:
 - affine transformation \(\tilde{v}(S) = v(S) + p_0 - \sum_{i \in S} p_i \)
 - endowment \(\tilde{v}(S) = v(S|X) \)
 - convolution \(v_1 \ast v_2(S) = \max_{T \subseteq S} v_1(T) + v_2(S \setminus T) \)
 - strong-quotient-sum
 - tree-concordant-sum
Closure properties

- If $v_1, v_2 \in GS$ we might not have $v_1 + v_2 \in GS$

- Some preserving operations:
 - affine transformation $\tilde{v}(S) = v(S) + p_0 - \sum_{i \in S} p_i$
 - endowment $\tilde{v}(S) = v(S|X)$
 - convolution $v_1 \ast v_2(S) = \max_{T \subseteq S} v_1(T) + v_2(S \setminus T)$
 - strong-quotient-sum
 - tree-concordant-sum

- Open question: can we construct all gross substitutes from matroid rank functions and those operations?
 - Some progress: See talk by Eric Balkanski on Thu
End of Part I