
GROSS SUBSTITUTABILITY : AN ALGORITHMIC SURVEY

RENATO PAES LEME∗

Abstract. The concept of gross substitute valuations was introduced by Kelso and Crawford as
a sufficient conditions for the existence of Walrasian equilibria in economies with indivisible goods.
The proof is algorithmic in nature: gross substitutes is exactly the condition that enables a natural
price adjustement procedure – known as Walrasian tatônnement – to converge to equilibrium.

The same concept was also introduced independently in other communities with different names:
M♮-concave functions (Murota and Shioura), Matroidal and Well-Layered maps (Dress and Terhalle)
and valuated matroids (Dress and Wenzel). Here we survey various definitions of gross subtitutability
and show their equivalence. We focus on algorithmic aspects of the various definitions. In particular,
we highlight that gross substitutes are the exact class of valuations for which demand oracles can be
computed via an ascending greedy algorithm. It also corresponds to a natural discrete analogue of
convex concave: local maximizers correspond to global maximizers.

Finally, we discuss algorithms for the welfare problem (computing an optimal allocation of a set
of items when agents have gross substitute valuations) as well as the related problem of computing
Walrasian prices. We discuss approximation schemes based on the tatônnement procedure, linear
programming approaches and purely combinatorial strongly-polynomial time algorithms.

1. Gross substitutes and Walrasian tatônnement. The notion of gross sub-
stitutes was introduced by Kelso and Crawford [14] in order to analyze two sided
matching markets of workers and firms. Originally it was defined as a condition on
the gross product generated by a set of workers for a given firm, hence the name gross
substitutes. Such condition allowed a natural salary adjustment process to converge to
a point where each worker is hired by some firm and no work is over-demanded. Gul
and Stacchetti [11] later use the same notion to analyze the existence of price equilib-
ria in markets with indivisible goods. For this survey, we adopt the Gul and Stacchetti
terminology and talk about buyers/items/prices instead of firms/workers/salaries as
in Kelso and Crawford.

Before we proceed, we fix some notation: we denote by [n] = {1, . . . , n} a set
of items (goods). A valuation over such items is a function v : 2[n] → R such that
v(∅) = 0. Given a price vector p ∈ R

n, we will define vp(S) = v(S)−p(S) as the value
of a subset S under the price vector p. This corresponds to the utility of an agent
with this valuation for acquiring such set under those prices. Given disjoint sets S, T
we define the marginal value of T with respect to S as v(T |S) = v(T ∪ S) − v(S).
We sometimes omit braces in the representation of sets when this is clear from the
context, for example, by v(i, j|S) we denote v({i, j}|S).

An economy with indivisible goods is composed by a set [n] of items (goods) and
[m] of buyers (agents) where each agent i ∈ [m] has a valuation vi : 2[n] → R. We
use the notion of the demand correspondence to define an equilibrium of this economy:

Definition 1.1 (demand correspondence). Given a valuation function v : 2[n] →
R and a vector of prices p ∈ R

n, we define the demand correspondence as:

D(v, p) := {S ⊆ [n]; vp(S) ≥ vp(T), ∀T ⊆ [n]}

Definition 1.2 (Walrasian equilibrium). Given an economy with indivisible
goods with n goods, m agents and valuations vi, a Walrasian equilibrium corresponds
to a vector of prices p ∈ R

n
+ and a partition of the goods in disjoint sets [n] = ∪m

i=1Si

∗Microsoft Research Silicon Valley, (renatop@microsoft.com).

1

such that Si ∈ D(vi, p).

A reader familiar with the duality theorem in linear programming will readily rec-
ognize that the definition of Walrasian equilibrium closely resemble complementarity
conditions where the prices play the role of dual variables. Indeed, this is formalized by
the results known as the First and Second Welfare Theorem. The First Welfare The-
orem states that if (p, S1, . . . , Sm) is a Walrasian equilibrium then this partition cor-
responds to the optimal allocation of goods, i.e., the allocation maximizing

∑

i vi(Si).
The proof is quite elementary: let S∗

1 , . . . , S
∗
m be any partition maximizing the welfare.

Then since Si ∈ D(vi, p), it must be the case that: vi(Si) − p(Si) ≥ vi(S∗
i) − p(S∗

i).
Summing for all i and observing that

∑

i p(Si) = p([n]) =
∑

i p(S
∗
i), we conclude that

∑

i v
i(Si) ≥

∑

i v
i(S∗

i).

The analogy with linear programming is completed by what is called the Second
Welfare Theorem. It states that if (p, S1, . . . , Sm) is a Walrasian equilibrium and
S∗
1 , . . . , S

∗
m maximizes

∑

i vi(S
∗
i), then (p, S∗

1 , . . . , S
∗
m) is also a Walrasian equilib-

rium. The proof is also simple, observe that summing vi(Si)−p(Si) ≥ vi(S∗
i)−p(S∗

i)
for all i we obtain

∑

i v
i(Si) ≥ ∑

i v
i(S∗

i). But since this is an equality, we should
have an equality for each agent i: vi(Si)−p(Si) = vi(S∗

i)−p(S∗
i), hence S

∗
i ∈ D(vi, p).

A natural question is for which economies there exist Walrasian equilibria. Kelso
and Crawford define a very natural price adjustment procedure and define gross sub-
stitutes as the natural condition that allows such process to converge. The general
idea behind this procedure goes back to Walras’ tatônnement procedure [27], where
tatônnement means trial-and-error. The idea is that we start with an arbitrary price
vector and compute one set in the demand of each agent. Then, for each item that is
demanded by more then one agent (overdemanded) we increase the price. For each
item that is demanded by no agent (underdemanded), we decrease the price. We
iterate this until no item is overdemanded or underdemanded.

Let’s describe this procedure precisely. We will make some modifications to the
idea above to make the procedure simpler to analyze. Instead of starting from an
arbitrary price vector p, we will start with zero prices for all items and only allow
prices to increase. Moreover, we will start with all the items allocated to the first
player at zero price and we will take turns asking buyers to choose their favorite set
of items given prices as follows: the current price pj for items currently allocated to
him and pj + δ for items allocated to other players. Once he takes items from other
players, the prices of such items increase by δ.

Algorithm 1 Walrasian tatônnement procedure

Input: δ > 0, n,m ∈ Z+ and vi for i ∈ [m]
Set zero prices for all items: pj = 0, ∀j ∈ [n]
Set initial allocation S1 = [n], Si = ∅, ∀i ∈ [m] \ {1}
Implicitely define pi ∈ R

n as a function of p s.t. pij = pj if j ∈ Si and pij = pj + δ o.w.

while there exists i such that Si /∈ D(vi, pi)
find a demanded set under the this price vector Xi ∈ D(vi, pi)
update prices: for j ∈ Xi \ Si, set pj = pj + δ (vectors pi are implicitly updated)
update allocations: Si = Xi and Sj = Sj \Xi for j 6= i

Notice that the procedure has to stop at some point, since prices cannot increase
indefinitely. If the price of an item is higher then maxi,S vi(S), for example, no agent

2

will demand this item and the price will freeze. Let p be the final price and pi be
the price faces by each agent. It should be the case that Si ∈ D(vi, pi), which means
that for all T ⊆ [n], vi(Si) − pi(Si) ≥ vi(T) − pi(T). This can be re-written as:
vi(Si)− p(Si) ≥ vi(T)− p(T)− δ|T \ Si|.

In the limit as δ → 0, we recover a price vector and allocation such that vi(Si)−
p(Si) ≥ vi(T) − p(T). To make the previous statement precise, let (pt, St

1, . . . , S
t
m)

be the outcome of the Walrasian tatonnment procedure for δt =
1
t
for t ∈ Z+. Since

there are finitely many allocations (St
1, . . . , S

t
m), there is one allocation that happens

infinitely often. Let S1, . . . , Sm be such allocation and let t1 < t2 < . . . be the
infinite subsequence corresponding to this allocation. Since pt is bounded, passing to
a subsequence if necessary, we can assume that pt → p. So taking t → ∞ for this
subsequence, we get vi(Si)− p(Si) ≥ vi(T)− p(T) for all i and T ⊆ [n].

The argument above gives us an existential proof of a price vector p and an allo-
cation Si such that each agent is getting his optimal bundle under the current prices.
This is not yet a Walrasian equilibrium, since Definition 1.2 requires the allocation
to be a partition of the set of items, i.e., ∪iSi = [n]. The definition of gross substi-
tutability is exactly what is needed to ensure that we can run the procedure above
in such a way that all the items are allocated in the end. Since we started the Wal-
rasian tatônnement procedure with a partition of the items, if we can always find a
demanded set Xi ∈ D(vi, pi) containing his currently allocated items, i.e., Si ⊆ Xi,
then we can guarantee the invariant that during the execution of the algorithm, no
item is even un-allocated. This motivates the following definition:

Definition 1.3 (gross substitutes, Kelso and Crawford [14]). A valuation func-
tion satisfies the gross substitutes property if for any price vectors p ∈ R

n and
S ∈ D(v, p), if p′ is a price vector with p′ ≤ p, then there is a set S′ ∈ D(v, p′)
such that S ∩ {j; pj = p′j} ⊆ S′.

In other words: if an agent with a gross substitute valuation demands a set S of
items under a price vector p and the price of some items subsequently increase, the
agent still demands the items in S whose price didn’t increase.

Theorem 1.4 (Kelso and Crawford [14]). If valuations v1, . . . , vm sastisfy the
gross substitutes property, the a Walrasian equilibrium always exists.

In some sense, gross substitutability is also necessary for the existence of Wal-
rasian equilibria. Gul and Stacchetti [11] show the following: let C be a class of
valuation functions that contains all unit demand valuations, i.e., all valuations of the
type v(S) = maxj∈S v({j}). Then if C is such that for all v1, . . . , vm ∈ C there is a
Walrasian equilibrium, then all valuations in C are gross substitutes.

2. Examples, Non-Examples, OXS and Submodularity. It is instructive
to have in mind a couple of examples and non-examples of gross substitute functions,
to guide our intuition in the following sections. The most natural subclass of gross sub-
stitutes is the class of matroid rank functions (we refer to Lawler [17] or Oxley [25] for a
comprehensive discussion on matroids). Yet, sum of matroid rank functions might not
be gross substitute valuations. For example, given three items {a, b, c} define the func-
tion ri : 2{a,b,c} → R such that: ri(∅) = 0, ri(S) = 1 for |S| = 1, ri({a, b, c} \ i) = 1,
and ri(S) = 2 for all remaining subsets S. Notice that for any i = a, b, c, ri is a
matroid rank function and hence satisfy the gross substitutability. However, the val-

3

uation v = ra + 2 · rb + 3 · rc does not satisfy gross substitutability. In order to see
that, observe that for the price vector p = [4, 5, 4], D(v; p) = {{a}, {c}, {a, c}, {b, c}}.
If the price of item c increases to ∞, i.e., p′ = [4, 5,∞], then demand set becomes
D(v; p′) = {{a}}. So the increase in price of c makes b nto be in any demanded set,
violating Definiton 1.3.

One other traditional example of gross substitutes are (i) unit-demand functions,
such that v(S) = maxi∈S v({i}), (ii) additive functions, which are functions such that
v(S) =

∑

i∈S v({i}) and (iii) symmetric submodular functions, which are of the form
v(S) = f(|S|) for some monotone concave function f : R+ → R+. The previous three
examples are special cases of the class of OXS functions, introduced by Lehmann,
Lehmann and Nisan [18].

Definition 2.1 (OXS [18]). A valuation function v : 2[n] → R+ is in the OXS
class if there is a bipartite graph with non-negative weights on the edges, and left
vertex-set corresponding to [n] such that v(S) is the weight of the maximum weighted
matching on the subgraph induced by the right side nodes and the set S on the left side.

We postpone until Section 8 a proof that all OXS valuations are gross substitutes,
but we remark that unit-demand functions are the special case where there is only one
vertex on the right side, additive functions correspond to the case where the vertices
on the right side have degree 1 and the symmetric submodular case corresponds to
the case where the bipartite graph is complete and all edges incident to a right-side
node have the same weight.

Gul and Stachetti [11] observe that gross substitutes are a subclass of submodular
functions :

Definition 2.2 (submodularity). A valuation function is said to be submodular
for all subsets S, T ⊆ [n], v(S ∩ T) + v(S ∪ T) ≤ v(S) + v(T). Equivalently, for every
S ⊆ [n] and i, j /∈ S, v(i, j|S) ≤ v(i|S) + v(j|S).

Theorem 2.3 (Gul and Stacchetti [11]). Every gross substitute valuation func-
tion is submodular.

Proof. Let v be a gross substitute valuation functions. Given S ⊆ [n] and i, j /∈ S,
consider the price vector1 such that pt = ∞ for t /∈ S∪{i, j}, pt = −∞ for t ∈ S∪{j}
and pi = v(i|S ∪ {j}). Clearly S ∪ {i, j} ∈ D(v, p). Now, if one defines p′ such that
p′j = ∞ and p′t = pt for all other t, then by gross substitutability, S ∪ {i} must be a
demanded set. Therefore: v(i|S) ≥ v(i|S ∪ {j}).

Since the example v = ra+2 ·rb+3 ·rc earlier in this section is the sum of matroid
rank functions, and hence submodular, it is clear that gross substitutes is a strict
subclass of submodular functions. Another good source of examples of submodular
but not gross substitute functions comes from the class of budget additive functions.
We say that a valuation function is budget additive if it is of the form: v(S) =
min{B,

∑

i∈S wi} for non-negative real numbersB,w1, . . . , wn. The following example

1allowing prices to take values ∞ and −∞ simplifies the arguments. To be more precise, one can
view such prices as M or −M for M = 1 +maxS v(S).

4

due to Lehmann, Lehmann and Nisan [18] shows function that is budget additive but
not gross substitutes: consider three items {a, b, c} with weights wa = wb = 1 and
wc = 2 and budget B = 2. In order to see that the associated budget additive
function is not gross substitutes, notice that for the prices p = [1/2, 1/2, 1], D(v, p) =
{{a, b}, {c}}, but if the price of a increases and the price vector becomes p′ = [1, 1/2, 1],
then the demand correspondence becomes D(v, p′) = {{c}}, i.e., the increase in the
price of a makes item b be no longer demanded.

3. Gross substitutes, greedy demand oracles and local search. An algo-
rithmic primitive needed to implement the Walrasian tatônnement procedure is the
computation of a set in the demand correspondence X ∈ D(v, p). This is usually re-
ferred as the demand oracle problem. A simple heuristic to compute demand oracles is
the greedy algorithm: start with the empty set X and keep adding the element j /∈ X
that gives the maximum improvement to vp(X). In other words:

Algorithm 2 Greedy demand oracle

Input: p ∈ R
n
+, v : 2[n] → R+

Initialize X = ∅
repeat

find j∗ ∈ [n] \X maximizing ∆j = v(j|X)− pj
if ∆j∗ > 0, X = X ∪ {j∗}
if X = [n] or ∆j∗ ≤ 0, return X

The demand oracle problem can be used to give an alternative definition of gross
substitutes as the class of valuations for which the greedy heuristic is exact:

Definition 3.1 (gross substitutes). A valuation function satisfies the gross sub-
stitutes property if for all price vectors p ∈ R

n, the greedy algorithm implements a
demand oracle, i.e., G(v, p) ∈ D(v, p), where G(v, p) is the output by the greedy de-
mand oracle (Algorithm 2).

The first part of this survey will be devoted to connect the classical definition
1.3 of gross substitutes to the definition 3.1. The path connecting those two defini-
tions involves insights by different authors and reveals, in the route, many interesting
properties about gross substitutes.

Before we proceed with this task, we also mention another algorithmic definition
of gross substitutability based on local search. Consider the following heuristic to
compute demand oracles: start at an arbitrary set X and try to find a set improving
vp in the neighborhood N of X , where the neighborhood is composed by all sets that
can be obtained from X by adding or removing one element.

Algorithm 3 Local search demand oracle

Input: p ∈ R
n
+, v : 2[n] → R+ Let X = X0 ⊆ [n] be an arbitrary initial set

repeat

Let N = {X ∪ {i}; i /∈ X} ∪ {X \ {i}; i ∈ X} ∪ {X ∪ {i} \ {i′}; i /∈ X, i′ ∈ X}
If maxY ∈N vp(Y) ≤ vp(X), return X
Else choose some Y ∈ N with vp(Y) > vp(X) and let X = Y .

Gul and Stacchetti [11] show that yet another way of defining gross substitutes
is as the class of valuation functions for which local search is exact, i.e., it doesn’t get

5

stuck on local minima:

Definition 3.2 (gross substitutes, Gul and Stacchetti [11]). A valuation function
satisfies the gross substitutes property if for all price vectors p ∈ R

n, the local search
algorithm implements a demand oracle, i.e., L(v, p,X0) ∈ D(v, p), where L(v, p,X0)
is the output by the local search demand oracle (Algorithm 3).

Equivalently, a valuation function satisfies the gross substitutes property if for
all price vectors p ∈ R

n, S ∈ D(v, p) iff vp(S) ≥ vp(S ∪ i), vp(S) ≥ vp(S \ j) and
vp(S) ≥ vp(S ∪ i \ j), for all i /∈ S and j ∈ S.

4. A price independent local definition. We make a brief detour and look
at a different, yet very related question about gross substitutes. All definitions given
so far involve prices, i.e., they are of the form: a valuation v satisfied the gross sub-
stitutes property if for all price vectors p, the pair (v, p) has some given property.
The question of giving an explicit definition of gross substitutes was resolved simul-
taneously by Fujishige and Yang [10] and Reijnierse, Gellekom and Potters [26]. The
first paper provides a powerful connection to the theory of Discrete Convex Analysis,
which we discuss in more detail in Section 7. We focus first on the definition given by
Reijnierse et al [26].

Theorem 4.1 (Reijnierse, Gellekom and Potters [26]). A valuation function has
the gross substitutes property iff it is submodular and for all sets S ⊆ [n] and all
distinct i, j, k /∈ S, the following holds:

v(i, j|S) + v(k|S) ≤ max [v(i|S) + v(j, k|S), v(j|S) + v(i, k|S)] (GS)

The high level picture of their proof is quite simple and illuminating. Here we
provide a brief sketch of it. First, they show that if a function doesn’t have the gross
substitutes property iff it is possible to find the following certificate: a price vector
p ∈ R

n such that

either (i) D(v, p) = {S, S ∪ {i, j}} or (ii) D(v, p) = {S ∪ {k}, S ∪ {i, j}}.
Notice that the existence of such certificate clearly shows the violation of gross sub-
stitutability: the increase in the price of j would make the demand set become {S}
in case (i) and {S ∪ {k}} in case (ii). Therefore, item i would no longer be in the
demand set. Proving the other direction requires more work, but its essence is to
search for a minimal violation of gross substitutability by starting with an arbitrary
one and changing the price vector so to shrink the demand set until it is minimal.

The second step is to transform the existence of certificates as above in simple
conditions on v. This is based on two observations: There exists a certificate of type
(i) iff the v is not submodular. There exists a certificate of type (ii) iff there is a
violation of condition (GS).

First, assume that we have a certificate of type (i). So, there are prices such that
0 = v(i, j|S)− pi − pj > max[v(i|S)− pi, v(j|S)− pj]. Summing the inequalities 0 >
v(i|S)−pi and v(i, j|S)−pi−pj > v(j|S)−pj we get: v(i, j|S) > v(i|S)−v(j|S) which
is a violation of submodularity. Conversely, if you have a violation of submodularity
for i, j, S, take pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j} and pi = v(i|S) + ǫ and
pj = v(j|S) + ǫ for some tiny ǫ and this gives us a certificate of type (i).

Assume now that we have a certificate of type (ii). So, there are prices such
that v(k|S) − pk = v(i, j|S) − pi − pj > max[v(i|S)− pi, v(j|S) − pj, v(i, k|S) − pi −

6

pk, v(j, k|S)− pj − pk]. Summing the inequalities such that the prices cancel, we get:
v(i, j|S)+ v(k|S) > max[v(i|S)+ v(j, k|S), v(j|S)+ v(i, k|S)]. Conversely, if you have
a violation of the condition (GS) for i, j, k, S, let φ > 0 be the value of the violation,
i.e., φ = v(i, j|S)+ v(k|S)−max{v(i|S)+ v(j, k|S), v(j|S)+ v(i, k|S)}. Now, consider
prices pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j, k} and pi = v(i|S ∪ {j}) − 1

2φ,
pj = v(j|S ∪{i})− 1

2φ and pk = v(k|S)+ v(i, j|S)− v(i|S)− v(j|S)−φ. It is straight-
forward to check that such prices give us a certificate of type (ii).

Now we explain what we mean by a local characterization. Given a valuation
function v and two sets S,R ⊆ [n] we can define a restriction vR|S : 2R → R by
vR|S(T) = v(T |S). We say that this is a k-restriction if |R| = k. Observe that usual
properties as monotonicity and submodularity are properties of the restrictions, i.e.,
a function is monotone iff each 1-restriction is monotone. A function is submodular
iff each 2-restriction is submodular. A corollary of Theorem 4.1 is that:

Corollary 4.2. A valuation function satisfies the gross substitutes property iff
every 3-restriction satisfied the gross substitutes property.

An equivalent characterization of the one in Theorem 4.1 was also observed in
Lehmann, Lehmann and Nisan [18] and Bing, Lehmann and Milgrom [4]. The latter
chracterization defines for each valuation v and subset S ⊆ [n] a measure of how two
goods i and j are substitutes to each other. Given i, j /∈ S, let:

αS(i, j) = v(i|S) + v(j|S)− v(i, j|S)

and observe that (GS) is equivalent to αS(i, j) ≥ min[αS(i, k), αS(k, j)]. This in
particular says that dS(i, j) = αS(i, j)

−1 is a metric satisfying the following stronger
version of the triangle inequality: dS(i, j) ≤ max[dS(i, k), dS(k, j)]. Such metrics are
called ultrametrics and have the interesting properties that all triangles are isosceles.
This translates back to αS as saying that given {i, j, k}, then up to renaming we have:

αS(i, k) = αS(k, j) ≤ αS(i, j) (Iso)

We observe one interesting non-trivial and useful consequence of the isosceles tri-
angule property, which will be useful later:

Lemma 4.3. Given a gross substitute valuation v : 2[n] → R, S ⊆ [n] and
i1, i2, j1, j2 /∈ S, then:

v(i1, i2|S) + v(j1, j2|S) ≤ max[v(i1, j2|S) + v(j1, i2|S), v(i1, j1|S) + v(i2, j2|S)]

Let P = {i1, i2, j1, j2} and M = min{t1,t2}∈P αS(t1, t2). Define the length of
the edge between (t1, t2) as αS(t1, t2). By property (Iso), every triangle is isosceles
with the smaller edge appearing at least twice. So, if we look the graph of the edges
of minimal length between P , then either one of two things happen: (i) there is a
cyle, i.e., there are αS(x1, x2) = αS(x2, x3) = αS(x3, x4) = αS(x4, x1) = M where
{x1, x2, x3, x4} = {i1, i2, j1, j2} or (ii) there is a star, i.e., αS(x1, x2) = αS(x2, x3) =
αS(x2, x4) = M . In order to see that, let x1, x2 be nodes in P such that αS(x1, x2) =
M . Let x3 be some other node, so the triangle x1, x2, x3 must have two sides of length
M . Up to renaming, αS(x1, x2) = αS(x2, x3) = M . If αS(x2, x4) = M we are in case

7

(ii). If αS(x2, x4) > M then by property (Iso) applied on the triangles x1, x2, x4 and
x2, x3, x4, we must have αS(x1, x4) = αS(x3, x4) = M , in which case we are in case
(i).

Now, proving the statement of the lemma in each of the two cases is simple: if
we are in case (i), then we can assume (swapping the names of i1, i2 if necessary)
that αS(i1, j1) = αS(i2, j2) = M , so: αS(i1, j1) + αS(i2, j2) = 2M ≤ αS(i1, i2) +
αS(j1, j2), which is equivalent to the statement in the lemma. In case (ii), say i1 is
the center of the star, i.e., αS(i1, x) = M for all x ∈ {i2, j1, j2}. Now: αS(j1, j2) ≥
min[αS(i2, j1), αS(i2, j2)]. Swapping the names of j1 and j2 if necessary, we can
assume that: αS(j1, j2) ≥ αS(i2, j1). That together with αS(i1, i2) = M = αS(i1, j2),
we get again αS(i1, j1)+αS(i2, j2) ≤ αS(i1, i2)+αS(j1, j2) which is equivalent to the
statement in the lemma.

5. Well Layered and Matroidal Maps. The final step towards proving that
the definitions 3.1 and 1.3 is the concept of well layered maps introduced by Dress
and Terhalle [7] – in which the authors characterize the set functions v : 2[n] → R for
which greedy algorithms are optimal.

Definition 5.1 (well-layered map). A function v : 2[n] → R is called well-
layered iff for each p ∈ R

n the sets S0, S1, S2, . . . obtained by the greedy algorithm
(i.e., S0 = ∅ and Si = Si−1 ∪ {xi} where xi ∈ argmaxx∈[n]\Si−1

vp(x|Si−1)) are such
that vp(Si) = max{vp(S); |S| = i}.

Theorem 5.2 (Dress and Terhalle [7]). A map v : 2[n] → R is well-layered iff
for any triple of disjoint sets S, {i}, T with |T | ≥ 2,

v(i|S) + v(T |S) ≤ max
j∈T

v(j|S) + v(T ∪ i \ j|S) (WL)

One readily recognizes condition (GS) to be a special case of (WL) with |T | = 2.
In fact, they are equivalent. Let’s show that (GS) implies (WL) by induction on |T |.
For |T | = 2, this is trivial. Now, suppose we proved it for |T | = t− 1. Given S, {i}, T
with |T | = t, choose k ∈ T minimizing αS(i, k). Then by the induction hypothesis
applied to S ∪ k, {i}, T \ k, we have that there is j ∈ T \ k such that:

v(i|S ∪ k) + v(T \ k|S ∪ k) ≤ v(j|S ∪ k) + v(T ∪ i \ j, k|S ∪ k)

which can be re-written as:

v(i, k|S) + v(T |S) ≤ v(j, k|S) + v(T ∪ i \ j|S)

now notice that by the choice of k, it must be the case that for all j, αS(i, k) ≤ αS(k, j),
since the smaller αS-value in the triangle i, j, k appears twice and αS(i, k) ≤ αS(i, j).
Now, this means that v(i|S)− v(i, k|S) ≤ v(k|S)− v(j, k|S). Summing with the pre-
vious inequality gives us condition (WL) for |T | = t.

Now, we give a sketch of the proof for Theorem 5.2. First, assume that the
condition (WL) holds and let’s prove that St ∈ argmaxS;|S|=tvp(S) by induction
on t. The case t = 1 is trivial. Assume we proved for t − 1 and assume there is
S′ with |S′| = t and vp(S

′) > vp(St). Choose such set maximizing k such that
{x1, . . . , xk} ⊆ S′. Since |S′| = |St| = t, clearly k < t. Now, applying (WL) for

8

{x1, . . . , xk}, xk+1, T
′ = S′ \ {x1, . . . , xk} we get that there is j ∈ T ′ such that:

v(xk+1|x1, . . . , xk) + v(T ′|x1, . . . , xk) ≤ v(j|x1, . . . , xk) + v(T ′ ∪ xk+1 \ j|x1, . . . , xk)

and since v(xk+1|x1, . . . , xk) ≥ v(j|x1, . . . , xk) by the greedy rule, we have that
v(S′) ≤ v(S′ ∪ xk+1 \ j) contradicting the minimality of k.

For the other direction, assume that (WL) is violated. Since (WL) is equivalent
to (GS), (WL) must be violated by some |T | = {j, k}. So assume S, i, {j, k} for which
(WL) is not valid. Now, define prices such that pt = −∞ for t ∈ S, pt = ∞ for
t /∈ S ∪ {i, j, k}, pi = v(i|S) − ǫ, pj = v(j|S) and pk = v(k|S). The greedy algorithm
will first pick all the elements in S, then i. Now, observe that for t = |S| + 2 the
optimal set is either S∪{i, j}, or S∪{j, k} or S∪{i, k}. The fact that (WL) is violated
implies that v(i|S) + v(j, k|S) > v(j|S) + v(i, k|S). Substituting v(i|S) and v(j|S) by
the prices, we get that (for sufficiently small ǫ) v(j, k|S)−pj−pk > v(i, k|S)−pi−pk,
i.e., S ∪ {j, k} is strictly preferable then S ∪ {i, k}. The exact same argument works
swapping j and k, so the only set of size |S|+2 maximizing vp is S∪{j, k}. Therefore
v can’t be a well-layered map, since the greedy algorithm picked i in step |S|+1. This
finishes the proof of Theorem 5.2.

The concept of well layered maps guarantees that the greedy algorithm will find
the optimal set of each cardinality. In order to guarantee that the greedy algorithm as
described in Section 3 will find the optimal, we needs to guarantee that once a layer
doesn’t improve over the previous, we can stop. Dress and Terhalle [6] observe that
in order for this to happen, it is necessary and sufficient that the valuation is both
well-layered and submodular. They call such functions matroidal maps.

Theorem 5.3 (Dress and Terhalle [6]). A valuation function satisfied Definition
3.1 iff it is well-layered and submodular.

The proof is simple: notice that submodularity guarantees that for the sets St

will be such that vp(St+1)−vp(St) ≤ vp(St∪xt+1 \xt)−vp(St−1) ≤ vp(St)−vp(St−1).
So: vp(St) ≥ 1

2 [vp(St−1) + vp(St+1)]. This guarantees that t 7→ vp(St) is concave. For
the converse, if a function is not submodular, then v(i, j|S) > v(i|S) + v(j|S). So
one can set prices pt = −∞ for t ∈ S, pt = ∞ for t /∈ S ∪ {i, j}, pi = v(i|S) + ǫ and
pj = v(j|S) + ǫ for some small ǫ. For such prices the greedy algorithm will terminate
on S, while the optimum is S ∪ {i, j}.

Lemma 5.3 establishes our main claim that Definitions 3.1 and 1.3 are equivalent.
We would like to finish by pointing out that many combinatorial structures such as
matroids, polymatroids, valuated matroids [8], among others, can be defined as the
class of objects for which a certain problem admits a greedy solution. For a more
extensive exposition on such combinatorial structures we refer to the classical text
of Korte, Lovász and Schrader on greedoids [15]. Similar arguments can be used to
argue about local search:

Theorem 5.4. A valuation function satisfied Definition 3.2 iff it is well-layered
and submodular.

First we argue that if a valuation v is well-layered and submodular, then local
search can’t get stuck in a local maximum for any price p. Let S∗ ∈ argmaxS⊆[n]vp(S)

9

and S ⊆ [n] be such that vp(S) < vp(S
∗). Then we want to argue that there is S′ ∈ N

where N is the neighborhood of S as in the local search procedure in Section 3. First
observe that if v is well-layered and submodular, then vp has also those two properties.

We consider three cases: Case (i) S ⊆ S∗. Notice that 0 < vp(S
∗ \ S|S) ≤

∑

i∈S∗\S vp(i|S), where the last inequality follows from submodularity. Therefore,

there is some i for which vp(i|S) > 0, then we can take S′ = S ∪ {i}. Case (ii)
S∗ ⊆ S For this case, 0 > vp(S \ S∗|S∗) ≥ vp(i|S \ i). So there i ∈ S \ S∗ such that
vp(i|S \ i) < 0, then we can take S′ = S \ i. Case (iii) if neither S ⊆ S∗ nor S∗ ⊆ S,
let i be the element in (S \ S∗) ∪ (S∗ \ S) maximizing vp(i|S ∩ S∗). If i ∈ S∗, we use
condition (WL) with S ∩ S∗, i, S \ S∗. This gives us j ∈ S \ S∗ such that:

vp(i|S ∩ S∗) + vp(S \ S∗|S ∩ S∗) ≤ vp(j|S ∩ S∗) + vp((S \ S∗) ∪ i \ j|S ∩ S∗)

Since vp(i|S ∩ S∗) ≤ vp((S \ S∗) ∪ i \ j|S ∩ S∗) we have that vp(S) ≤ vp(S ∪ i \ j).
If on the other hand, i ∈ S, we we use we use condition (WL) with S ∩ S∗, i, S∗ \ S.
Doing as above, we find j ∈ S∗ \S such that vp(S

∗) ≤ vp(S
∗∪ i\ j), which holds with

equality since S∗ is optimal. This way we obtain an optimal set closer to S. Then we
can repeat the above procedure with S∗ ∪ i \ j instead of S∗ a finite number of times
until we reach some set S′ ∈ N or we reach one of the previous cases.

For the converse direction, we want to show that if a valuation is not well-layered
or not submodular, local search can get stuck in suboptimal local minima. For this,
we can use the same examples used to show tha in such case the greedy algorithm
can be suboptimal.

6. Duality theorem for gross substitutes. The duality between gross sub-
stitutes and submodular functions was observed in many places, as in Fujishige and
Yang [10] and Murota [20], Gul and Stacchetti [12] and Ausubel and Milgrom [1].
Given a valuation function v, they consider the utility function u : Rn → R which
maps a set of prices p ∈ R

n to the optimal utility that can be obtained under
such prices u(p) = maxS vp(S). They relate it to the concept of R

n-valued sub-
modular function, which are functions f : R

n → R such that for any x, y ∈ R
n,

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), where ∨ and ∧ are the componentwise maximum
and minimum respectively. Analogously to submodular set functions, this is equiva-
lent to f(x+ δi · ei + δj · ej)− f(x + δi · ei) ≤ f(x + δj · ej)− f(x) for any δi, δj > 0
and i 6= j, where ei is the i-th coordinate vector.

Theorem 6.1 (duality, Ausubel and Milgrom [1]). A valuation function v :
2[n] → R has the gross substitutes property iff its associate utility u(p) = maxS vp(S)
is an R

n-valued submodular function.

Since u is continuous, it is enought to prove for almost all p, δi, δj and then we
can extend to all by continuity. Define Γ = ∪S,T⊆[n]{p ∈ R

n; vp(S) = vp(T)}. Then Γ
is a measure zero subset of Rn, since it is a finite collection of hyperplanes. For p /∈ Γ,
|D(v, p)| = 1. For p /∈ Γ, denote by D(v, p) the unique set demanded at those prices.
Given such p, there is ball around p such that for all price vectors, the demand set is
the same, so u(p) = v(D(v, p))−p(D(v, p)) and therefore, d

dpj
u(p) = −1{j ∈ D(v, p)}.

10

Now, notice that given p, δi, δj :

[u(p+ δi · ei + δj · ej)− u(p+ δi · ei)]− [f(u+ δj · ej)− u(p)] =
∫ δj

0

d

dpj
u(p+ δi · ei + z · ej)− d

dpj
u(p+ z · ej)dz =

∫ δj

0

−1{j ∈ D(v, p+ δi · ei + z · ej)}+ 1{j ∈ D(v, p+ z · ej)}dz ≤ 0

since the increase in pi can’t remove j from the demand set by gross substitutability.
The converse can be proved by the same argument backwards.

A different view of the same duality can be obtained by the characterization of
demand sets as basis of a matroid:

Theorem 6.2 (duality, Gul and Stacchetti [12]). A valuation function v : 2[n] →
R has the gross substitutes property then for any price p ∈ R

n, the set

D∗(v, p) = {S ∈ D(v, p); |S| ≤ |T |, ∀T ∈ D∗(v, p)}

of the demanded sets of minimum size, form the set of basis of a matroid.

One characterization of basis-set B ⊂ 2[n] of matroids is via the exchange property:
for any S, T ∈ B and s ∈ S \ T , there is t ∈ T \ S such that S ∪ t \ S ∈ B. We notice
that we proved exactly this fact in case (iii) of the proof of Theorem 5.4.

7. Connection to Discrete Convex Analysis and Valuated Matroids.

Fujishige and Yang [10] showed a powerful connection between gross substitute valua-
tions and the concept of M ♮-concave functions in Discrete Convex Analysis. Discrete
Convex Analysis is a theory developed by Murota [20] that defines a very general
class of functions f : Zn → R on the integral lattice for which it is possible to prove
strong duality theorems. Such theorems enable the design of efficient greedy and
flow-like algorithmic solutions for various discrete optimization problems involving
such functions.

Murota and Shioura [23] define M ♮-concave functions based on the concept of
M -concavity of Murota [20]. They originally define M ♮-concave functions on the in-
tegral lattice Zn, but for the purposes of this survey, we will consider their restriction
to {0, 1}n:

Definition 7.1 (M ♮-concave functions, Murota and Shioura [23]). A function
v : 2[n] → R is M ♮-concave if for all S, T ⊆ [n] and s ∈ S \ T ,

v(S) + v(T) ≤ max

[

v(S \ s) + v(T ∪ s), max
t∈T\S

v(S ∪ t \ s) + v(T ∪ s \ t)
]

(M ♮)

Theorem 7.2 (Fujishige and Yang [10]). A function v : 2[n] → R has the gross
substitutes property iff it is M ♮-concave.

The fact that M ♮-concavity implies gross substitutability is easy to see, since
taking T ⊆ S \ s we recover submodularity: v(S) + v(T) ≤ v(S \ s) + v(T ∪ s)
which can be rewritten as v(s|S \ s) ≤ v(s|T). Taking |S \ T | = 1 and |T \ S| ≥ 2,

11

we recover (WL). Since by submodularity v(S) + v(T) ≥ v(S \ s) + v(T ∪ s), so if
v(S)+v(T) ≤ v(S\s)+v(T∪s), then v(U∪s) = v(U)+v(s|T) for any S ⊆ U ⊆ T , mak-
ing (WL) hold for any t ∈ T \S. On the other hand, if v(S)+v(T) > v(S\s)+v(T ∪s),
then: v(S) + v(T) ≤ maxt∈T\S v(S ∪ t \ s) + v(T ∪ s \ t), which is exactly (WL).

For the other direction, assume that v is gross substitutes and we want to show is
satisfied (M ♮). First, consider the following transformation: given v : 2[n] → R, define
another valuation function on 2n items by adding n dummy items: ω : 2[2n] → R,
ω(S) = v(S ∩ [n]). It is straightforward to check that if v is gross substitutes then so
does ω. Now we define the condition (M) on ω as follows: for all sets S, T ⊆ [2n] with
|S| = |T | and s ∈ S \ T :

ω(S) + ω(T) ≤ max
t∈T\S

ω(S ∪ t \ s) + ω(T ∪ s \ t) (M)

It is simple to see that if ω satisfied (M) for all sets of equal cardinality, then v satisfied
(M ♮), since any pair of sets S, T ⊆ [n] map to equal cardinality sets S′, T ′ ⊆ [2n] by
padding the smaller set with dummy elements. Notice that (M) on ω implies (M ♮)
on v, since the term v(S \ s) + v(T ∪ s) accounts for the possibility that t ∈ T \ S in
(M) is a dummy item of [2n].

So, we only need to prove that if ω is a gross substitutes valuation, then it also
satisfied (M). For |S \ T | = |T \ S| = 1, the property in trivial. For |S \ T | =
|T \ S| = 2, this follows directly from Lemma 4.3. Now we prove by induction on
k = |S \ T | = |T \ S|. Fix some arbitrary s̃ ∈ S \ (T ∪ s) and find t̃ ∈ T \ S
maximizing ω(T ∪ s̃\ t̃)−ω(S∪ t̃\s). Now, apply induction on the sets S and T ∪ s̃\ t̃.
We get that there is t ∈ T \ (S ∪ t̃) such that:

ω(S) + ω(T ∪ s̃ \ t̃) ≤ ω(S ∪ t \ s) + ω(T ∪ {s, s̃} \ {t, t̃})

By the case with k = 2 with sets T and T ∪ {s, s̃} \ {t, t̃}, we know that:

ω(T)+ω(T ∪{s, s̃} \ {t, t̃}) ≤ max[ω(T ∪ s\ t)+ω(T ∪ s̃ \ t̃), ω(T ∪ s̃\ t)+ω(T ∪ s\ t̃)]

If the maximum corresponds to the first expression, this together with the previous
inequality, gives us exactly what we want to prove, i.e., ω(S) + ω(T) ≤ ω(S ∪ t \ s) +
ω(T ∪s\t), which corresponds to condition (M). If the maximum is the second expres-
sion we use the choice of t̃ to see that: ω(T∪s̃\t̃)−ω(S∪t̃\s) ≥ ω(T∪s̃\t)−ω(S∪t\s).
This together with the previous inequalities also leads to condition (M).

Valuated Matroids. The characterization of gross substitutability by the (M ♮)
also connects it to the concept of valuated matroids, due to Dress and Wenzel [8]:

Definition 7.3. Let
(

[n]
k

)

= {S ⊆ [n]; |S| = k}. We say that a map ω :
(

[n]
k

)

→ R

is a valuated matroid if is satisfied the following version of the exchange property:
given S, T ∈

(

[n]
k

)

and s ∈ S \ T , there exists t ∈ T \ S such that:

ω(S) + ω(T) ≤ ω(S ∪ t \ s) + ω(T ∪ s \ t)

In particular, Theorem 7.2 together with the discussion in its proof imply that:

12

Lemma 7.4. A valuation v : 2[n] → R satisfies the gross substitutes property iff
the map ω :

(

[2n]
n

)

→ R defined by ω(S) = v(S ∩ [n]) is a valuated matroid. Also, if
v satisfies the gross substitutes property then for every k ≤ n, the restriction of v to
(

[n]
k

)

is a valuated matroid. In other words, given two sets of equal cardinality and a
gross substitutes valuation, then (M) is satisfied.

8. Convolution operation. As we saw in Section 2, one cannot build gross
substitute functions by taking linear combinations of simpler gross substitute, since
gross substitutability is not closed under addition. However, this class is closed under
a different operation, called convolution.

Theorem 8.1 (Lehmann, Lehmann and Nisan [18] and Murota [20]). Given two
valuation functions v1, v2 satisfying the gross substitutes property then the valuation
function v = v1 ∗ v2 also satisfied the gross substitutes property, where:

v1 ∗ v2(S) = max
S1⊆S

v1(S1) + v2(S \ S1)

We will give an algorithmic proof of the previous theorem based on a couple of
observations about the Walrasian tatônnement procedure. First note that we can find
S ∈ D(v1 ∗ v2, p) by finding a Walrasian equilibrium in an economy with items [n]
and three players with valuations v1, v2, u where u(S) =

∑

j∈S pj . Let S1, S2, U be
the partition of the items induced by such equilibrium. Then, this is the partition
maximizing v1(S1) + v2(S2) + p(U) = p([n]) + [v1(S1) + v2(S2) − p(S1 ∪ S2)]. In
particular, S1, S2 must be the optimal partition of S = S1∪S2 among v1, v2, therefore,
S maximizes (v1 ∗ v2)(S)− p(S) and therefore S ∈ D(v1 ∗ v2, p).

Second observe that for gross substitute valuations the Walrasian tatônnement
procedure (Algorithm 1) always outputs a partition of the goods if we are careful
to always select Xi ∈ D(vi, pi) such that Si ⊆ Xi. This can be easily implemented
by computing Xi via the greedy algorithm (Algorithm 2) initialized with Xi = Si.
Moreover, the partition is such that

∑

i vi(Si) ≥
∑

i vi(S
∗
i) + δn. For rational valua-

tions, we can rescale them such that vi(Si) are integers. In such case, taking δ < 1
n

guarantees that Walrasian tatônnement outputs the optimal allocation.
Finally, in the description of Algorithm 1 we initialized the prices as zero and

the allocations such that agent 1 initially has all the goods. Notice that it enough
to initialize with a price p ∈ R

n
+ and a partition S1, . . . , Sn such that there is Xi ∈

D(vi, p) such that Si ⊆ Xi.
Those observations together can be used to give an elementary proof of Theorem

8.1. We show that v1 ∗ v2 satisfy the Definition 1.3. Let S ∈ D(v1 ∗ v2, p) and
(v1 ∗ v2)(S) = v1(S1) + v2(S2). Consider a Walrasian equilibrium in the economy
formed by v1, v2, u. Let q be the price vector in such equilibrium. By the Second
Welfare Theorem, we take the allocation in equilibrium as S1, S2, U = [n] \ (S1 ∪ S2).
Let p′ be a price vector with p ≤ p′. We want to show that there is a set X ∈
D(v1 ∗ v2, p′) such that S ∩ {j; pj = p′j} ⊆ X .

For that, define u′(S) =
∑

j∈S p′j and consider the Walrasian tatônnement proce-

dure for the economy defined by v1, v2, u′ . Initialize such procedure with allocation
S1, S2, U and price vector q. This is a valid initialization, since Si ∈ D(vi, q) and also,
U ⊆ {j; qj ≤ p′j} ∈ D(u′, q). Now, let S′

1, S
′
2, U

′ be the final outcome of the Wal-
rasian tatônnement procedure. Observe that if j ∈ S1 ∪ S2, then qj ≥ pj , otherwise
q wouldn’t be Walrasian for v1, v2, u. Now, if p′j = pj , then such item couldn’t have

13

been acquired by u′, since it would never be in his demand for such price. Therefore
j ∈ S′

1 ∪ S′
2. Hence, (S1 ∪ S2) ∩ {j; pj = p′j} ⊆ S′

1 ∪ S′
2.

A corollary of Theorem 8.1 is that OXS valuations are gross substitutes: it is
straightforward from the definition that an OXS valuation function can be written as
a convolution of unit-demand functions, one for each right-side node in the bipartite
graph.

9. Computing Walrasian Prices for gross substitutes. The problem of
computing a Walrasian equilibrium of an economy consisting of n items and m agents
with gross substitutes valuations v1, . . . , vm has two components: the first is called
the welfare problem, which consists in finding a partition S1, . . . , Sm maximizing
∑

i v
i(Si). The second is the computation of Walrasian prices. There are various

approaches for those problems: the perhaps more classical line of approach is to use
variations of the tatônnement procedure. Nisan and Segal [24] propose a solution that
explores properties of gross substitutes to build a suitable linear program. Finally,
Murota [21, 22] gives a strongly polynomial time algorithm for this problem based on
a cycle-cancelling approach.

We start by discussing how to obtain Walrasian prices from a solution to the
welfare problem. The first method is based on an idea by Gul and Stachetti [11]:

Lemma 9.1 (Gul and Stachetti [11]). Let W be the optimal welfare of an economy
with a set [n] of items and agents with gross substitute valuations v1, . . . , vm. Also,
let W−j be the welfare with the economy with the same agents and items [n] \ j. Then
the price vector p with pj = W −W−j is a vector of Walrasian prices for the original
economy.

The method proposed by Gul and Stachetti to compute Walrasian prices needs
access to the optimal allocation for n+1 economies: the original one and the economy
after each good is removed. An alternative approach is given by Murota [21]:

Lemma 9.2 (Murota [21]). Let S1, . . . , Sm be the optimal allocation of a set [n]
of items to agents with gross substitute valuations v1, . . . , vm. Add m dummy items
to the set, i.e., extend the original set of items to [n+m] = [n]∪{d1, . . . , dm} in such
a way that for each set S, vi(S) = vi(S ∩ [n]). Now, define S′

i = Si ∪ di and a graph
G with nodes [n+m] and weighted directed edges

(j, k) with weight wjk = −vi(Si ∪ k \ j) + vi(Si) for j ∈ S′
i and k /∈ S′

i

If the allocation is optimal, the graph has no negative cycles and therefore, the shortest-
path distance is well defined. For each i ∈ [n+m], let φi be the distance from dummy
node d1 to i. Then φi ≤ 0 and the vector pi = −φi is a vector of Walrasian prices.

First assume that the graph has no negative cycles. In such case, the concept of
distance is well defined. Given a pair of dummy nodes di, dj , the weight of the arcs
wdi,dj

= wdj ,di
= 0, then φdi

= 0 for all dummy nodes. Also, for all items k ∈ Si, the
weight of the arc from a dummy node di to k is wdi,k = −vi(Si ∪ k) + vi(Si) ≤ 0, so
φk ≤ 0 for all nodes k. Finally, notice that since φ is the shortest path distance, for all
j ∈ S′

i, k ∈/∈ S′
i: φk ≤ φj+wjk, which is equivalent to: vi(Si) ≥ vi(Si∪k\j)−pk+pj.

Since k and j are possibly dummy items, this also implies that: vi(Si) ≥ vi(Si∪k)−pk

14

and vi(Si) ≥ vi(Si \ j)+pj. The last three inequalities show that Si is a local optimal
of the local search procedure (Algorithm 3), hence Si ∈ D(vi, p) by Theorem 5.4.
Therefore, p is a vector of Walrasian prices.

Now we argue that if the allocation is optimal, then there are no negative cy-
cles. Given an optimal allocation, let p be a vector of Walrasian prices supporting
this allocation. Now define φj = −pj for all j ∈ [n] and φd = 0 for all dummy
items d. By the same argument as above, the fact that p is a vector of Walrasian
prices implies that: wij ≥ φi − φj , therefore for every cycle i1, i2, . . . , ik, i1 we have:
∑k

t=1 witit+1
≥ ∑j

t=1 φit − φit+1
= 0.

10. Welfare Problem for gross substitutes. Finally, we discuss algorithmic
solutions to the welfare problem for gross substitute valuations. Before we start, we
mention a couple of important special cases of this problem. If vi(S) = maxj∈S wij for
all i ∈ [m], then this is the traditional maximum weighted matching problem. If vi is
the rank function of a matroid, then this corresponds to a special case of the matroid
intersection problem. For example, the problem of deciding if a graph has k disjoint
spanning trees naturally maps to the welfare problem where the items correspond to
edges of the graph, there are k agents and valuation functions correspond to the rank
function of the graphical matroid. We discuss three approaches for this problem:
tatônnement, linear-programming and cycle cancelling. The first approach has a
natural economic intuition but yields only an approximation scheme. The second
approach produces an exact solution and runs in polynomial time. The third approach
is purely combinatorial and yields a strongly polynomial time algorithm.

10.1. Algorithms via the tatônnement procedure. In Section 1, the Wal-
rasian tatônnement procedure (Algorithm 1) was used as a proof device to show the
existence of Walrasian equilibria for gross substitute valuations. In this section we
discuss how to use it as an actual algorithm. We start by analyzing the running time
of Algorithm 1 using the greedy algorithm (initialized with Xi = Si) to compute the
demand oracle. Then we discuss variants of the implementation.

We assume that vi(S) is an integer (rescaling the input, if necessary) and define
M = maxi∈[m] v

i([n]). We argued in Section 1 that each price can increase at most
M/δ times. This gives a bound of nM/δ on the number of total price increases.

In what follows we argue that there are at most m+nM/δ executions of the while
loop in Algorithm 1. Consider the following implementation of the while loop: start
with a queue containing all the agents 1, . . . ,m. At each time, pop agent i from the
the queue and compute Xi ∈ D(vi, pi) with Si ⊆ Xi. If Xi 6= Si, execute the while
loop and for each k 6= i such that Sk changes during the while loop, add k to the
queue if he is not already there.

Noticed at this point we removed i from the queue. After the execution of the
while loop, we don’t need to look at i again, unless Si changes, i.e., unless some item
j is taken away from i, since by the fact that valuations are gross substitutes and the
prices only increase during the process, Si ∈ D(vi, pi) if the prices of items in Si stay
the same.

Each execution of the loop is dominated by the execution of the greedy demand
oracle that takes O(n2) time. This gives us a total running time of O(n2(M

δ
n+m)).

This produces a partition S1, . . . , Sm such that
∑

i v
i(Si) ≥ ∑

i v
i(S∗

i) − δn as we
argued in Section 1. Taking δ = 1

2n , gives us:
∑

i v
i(Si) ≥

∑

i v
i(S∗

i) − 1
2 and there-

fore
∑

i v
i(Si) =

∑

i v
i(S∗

i) since both are integers. The running time in this case is

15

O(n2(Mn2 +m)).

The previous version runs in pseudo-polynomial time due to the linear depen-
dency on M . This can be easily improved to a dependency on log(M) by updating
the prices in a multiplicative fashion. Initialize all prices to zero and define the fol-
lowing price update rule: U(0) = δ and U(pj) = pj(1 + δ). So each price is in the
set {0, δ, δ(1 + δ), δ(1 + δ)2, . . .}. Now, we change Algorithm 1 in two ways: first we
calculate pi as pij = pj if j ∈ Si and pij = U(pj) otherwise. Also, when we update
prices inside the while loop, we update pj to U(pj). By the same argument as before,
prices never rise past M , so there are at most n · log1+δ(M) price updates. This
produces a running time of O(n2m+ 1

δ
n3 logM). The solution produced is such that

vi(Si)−p(Si) ≥ vi(T)−p(T)−δ|T \ Si|−δp(T \Si) for all T ⊆ [n]. Taking T = S∗
i (the

optimal partition) and summing for all i, we get: (1 + δ)
∑

i v
i(Si) ≥

∑

i v
i(S∗

i)− n
δ
.

Maximum matching. It is illuminating to look at the case of weighted maxi-
mum matching, i.e. vi(S) = maxj∈S wij . For this particular case, the Walrasian
tatônnement procedure takes the form of the auction method from Bertsekas [2] and
the ascending auction of Demange, Gale and Sotomayor [5]. It also closely resembles
Kuhn’s Hungarian Method [16]. For this particular case, the demand oracle can be
computed in time O(n), which gives us complexity O(M

δ
n2 + nm). Consider further

the special case of unweighted maximum matching, where n = m, wij ∈ {0, 1} and
the graph has a perfect matching. Since M = 1, this gives an (1−δ)−1-approximation
algorithm of running time O(1

δ
n2). Taking δ = 1

2 we get exactly the 2-approximation
via the greedy algorithm for maximum matching. For δ = 1

n
we get an O(n3) exact

algorithm. Taking δ = 1√
n

one gets a matching of size n − √
n in time, O(n2

√
n).

After more
√
n iterations of an augmenting path algorithm, we are able to find the

optimal matching with total running time O(n2
√
n), which is the bound provided by

the Hopcroft-Karp algorithm [13].

10.2. Linear Programming algorithms. The second approach, proposed by
Nisan and Segal [24], is based on linear programming. They observe that the welfare
problem can be cast as the following integer program:

WIP = max
m
∑

i=1

∑

S⊆[n]

xiS · vi(S) s.t.

∑

S∋j

∑

i

xiS = 1, ∀j ∈ [n]

∑

S

xiS = 1, ∀i ∈ [m]

xiS ∈ {0, 1}, ∀i ∈ [m], S ⊆ [n]

Let WLP correspond to the linear programming relaxation of the previous prob-
lem, i.e., to the program obtained by relaxing the last constraint to 0 ≤ xiS ≤ 1.
Since it is a relaxation, WIP ≤ WLP. Bikhchandani and Mamer [3] observe that when
vi are gross substitute valuations, this holds with equality, for the following reason:
by the duality theorem in Linear Programming, WLP corresponds to the solution of
the following dual program:

16

WLP = min
∑

i∈[m]

ui +
∑

j∈[n]

pj s.t.

ui ≥ vi(S)−
∑

j∈S

pj , ∀i ∈ [m], S ⊆ [n]

pj ≥ 0, ui ≥ 0, ∀i ∈ [m], j ∈ [n]

Given an optimal solution to the integer programming corresponds to the welfare
of a Walrasian equilibrium WIP =

∑

i v
i(Si). If p are the corresponding Walrasian

prices and ui = vi(Si)−
∑

j∈Si
pj , (u, p) corresponds to a feasible solution to the dual.

Therefore WLP ≤ WIP.

Given this observation, Nisan and Segal propose solving the welfare problem by
solving the dual linear program above using a separation based linear programming
algorithm, such as the ellipsoid method. The program has n + m variables but an
exponential number of constraints. In order to solve it, we need to provide a separation
oracle, i.e., an polynomial-time algorithm to decide, for each (u, p) if it is feasible and
if not, produce a violated constraint. The problem that the separation oracle needs to
solve is to decide for each agent i if ui ≥ maxS vi(S)−∑

j∈S pj . For gross substitute
valuations, this can be easily solved by the greedy algorithm (Algorithm 2).

10.3. Cycle-cancelling algorithms. Finally we describe a purely combinato-
rial approach proposed by Murota [21, 22] based on the Fujishige’s cycle-cancelling
technique [9]. This approach has the advantage that it leads to a strongly polynomial
time algorithm.

Murota’s optimality criteria (Lemma 9.2) states that if an allocation S1, . . . , Sm is
not optimal, the directed graph as described in Lemma 9.2 has a negative cycle. The
graph will contain a negative-weight cycle iff the allocation induced by S1, . . . , Sm is
not efficient.

Let C be this negative weight cycle. First we note that an edge going out of S′
i

corresponds to the exchange of a (possibly dummy) element ai ∈ S′
i by an element

bi /∈ S′
i. The value of the edge corresponds to the change in value for i by replacing

ai by bi, i.e., waibi = vi(Si)− vi(Si ∪ bi \ ai).
This observation suggests the following approach to improve the allocation: per-

form the exchanges prescribed by such cycle, i.e., if M i = {(ai1, bi1), . . . (aiki , biki)} is
the set of edges in C going from S′

i, then update Si to Si∪{bi1, . . . , biki}\{ai1, . . . , aiki}
(ignoring the dummy nodes). The change in welfare is given by

∑

i v
i(Si) − vi(Si ∪

{bi1, . . . , biki} \ {ai1, . . . , aiki}) while the sum of weights of edges in the cycle is given by
∑

i

∑

(a,b)∈Mi vi(Si)− vi(Si ∪ b \ a). In general, those two quantities are different, so
the fact that the cycle has negative weight is not enough to guarantee that performing
the exchanges prescribed by it will result in an improvement in welfare.

Murota shows in [22] that if the cycle has minimal cardinality, however, then the
total weight of the cycle is equal to the change in welfare by performing the exchanges.
Formally:

Theorem 10.1. Given gross substitute valuations v1, . . . , vm and an allocation
S1, . . . , Sm, if C is a negative weight cycle in the graph defined in Lemma 9.2 and C
has the minimum number of edges among all negative cycles, then if M i = {(a, b) ∈
C; a ∈ S′

i}, Ai = {a ∈ [n]; (a, b) ∈ M i}, Bi = {b ∈ [n]; (a, b) ∈ M i}, then the total
weight of the cycle corresponds to the change in welfare by performing the exchanges

17

prescribed by it:

∑

i vi(Si)− vi(Si ∪Bi \Ai) =
∑

i

∑

(a,b)∈Mi vi(Si)− vi(S ∪ b \ a)

The proof relies of the following Lemma on gross substitute valuations:

Lemma 10.2. Given a gross substitute valuation v, a set S, A = {a1, . . . , ak} ⊆ S,
B = {b1, . . . , bk} ⊆ [n]\S, consider the bipartite graph G with left nodes A, right nodes
B and edge weights waibj = v(S) − v(S ∪ bj \ ai). If M = {(a1, b1), . . . , (ak, bk)} is
the unique minimum weight matching in the graph, then:

v(S)− v(S ∪B \A) = ∑k
j=1 v(S)− v(S ∪ bj \ aj)

Proof. The proof of the lemma follows by induction on k. For k = 1, the theorem
is trivial. Assume now it holds for k − 1. First observe that: v(S) − v(S ∪ B \ A) =
wakbk+v(S∪bk\ak)−v(S∪B\A). Define S̃ = S∪bk\ak. If we can prove that the graph
G̃ defined by left nodes A\ak, right nodes B\bk and weights w̃aibj = v(S̃)−v(S̃∪bj\ai)
has (a1, b1), . . . , (ak−1, bk−1) as the unique minimum weight matching and moreover
w̃aibi = waibi then we can apply the induction hypothesis and conclude that:

v(S ∪ bk \ ak)− v(S ∪B \A) = ∑k−1
i=1 w̃aibi =

∑k−1
i=1 waibi

In order to (a1, b1), . . . , (ak−1, bk−1) is the unique minimum matching, first we bound
w̃aibj and then we show that any other matching has strictly larger weight.

w̃aibj = v(S ∪ bk \ ak) + v(S)− [v(S ∪ {bk, bj} \ {ak, ai}) + v(S)]
∗
≥ v(S ∪ bk \ ak) + v(S)−

max{v(S ∪ bj \ ai) + v(S ∪ bk \ ak), v(S ∪ bj \ ak) + v(S ∪ bk \ ai)}
= min{waibj , waibk + wakbj − wakbk}

where the (∗) inequality follows from Lemma 4.3.
Now, given a matching M̃ different then (a1, b1), . . . , (ak−1, bk−1) on G̃, construct

an auxiliary graph in which we add the following edges for each (ai, bj) ∈ M̃ : (i) if
w̃aibj = waibj , then we add an edge between ai and bj with weight waibj and sign
+1. (ii) if w̃aibj = waibk +wakbj −wakbk we add edges between ai and bk with weight
waibk and sign +1, an edge between ak and bj with weight wakbj and sign +1 and
one edge between ak and bk with weight wakbk and sign −1. By a simply counting
argument, the signed degree of each node ai or bi with i < k is 1 and the signed
degree of nodes ak, bk is 0. Now we argue that the total signed weight of this graph
is at least

∑k−1
i=1 waibi . Indeed, if there are no edges incident to k this is obvious since

M was the unique minimum matching in G. If there are edges incident to k, consider
a cycle C containing edge (ak, bk) in the union between the M (with weight waibi)
and the +1-signed edges in the auxiliary graph. Let CM be the edges in the cycle
belonging to M and let CM̃ be the remaining edges. Note the the total weight of
CM is strictly smaller then the total weight of CM̃ since M is the unique minimum
matching. Therefore, we remove the edges in CM̃ from the auxiliary graph and add
the edges in CM , where adding an edge (ak, bk) with +1 sign is equivalent in removing
one edge (ak, bk) with −1 sign. By repeating this procedure we eventually obtain an

18

auxiliary graph with strictly smaller weight then the original and no incident edges on
ak, bk. The weight of such graph must be at least

∑k−1
i=1 waibi since M is the unique

minimum matching.
In order to finish the proof, we just need to argue that w̃aibi = waibi . By the

previous argument: w̃aibi ≥ min{waibi , wakbi + waibk − wakbk} = waibi since by the
minimality of matching M , waibi + wakbk < wakbi + waibk . For the other direction,
we again use Lemma 4.3 to see that:

v(S ∪ bi \ ai) + v(S ∪ bk \ ak) ≤ max{v(S) + v(S ∪ {bi, bk} \ {ai, ak}),
v(S ∪ bk \ ai) + v(S ∪ bi \ ak)} = v(S) + v(S ∪ {bi, bk} \ {ai, ak})

since waibi + wakbk < wakbi + waibk implies that v(S ∪ bi \ ai) + v(S ∪ bk \ ak) >
v(S ∪ bk \ ai) + v(S ∪ bi \ ak).

Proof. [of Theorem 10.1] From the previous lemma, it is enough to show that
if M i is the unique minimum weighted matching in the bipartite graph with left
nodes Ai, right nodes Bi and edge weights waibj . Assume that there is an alternative
perfect matching M ′ = {(aij1 , bij2), (aij2 , bij3), . . . , (aijk , bij1)} with total weight no larger
then the original one. Consider now k cycles in graph G where the t-th cycle Ct is
formed by edge (aijt , b

i
jt+1

) and the path from bijt+1
to aijt in the original cycle C.

Each cycle Ci is either C or is a cycle with smaller number of edges. By a simple
counting argument, there exists an integer ℓ such that the multiset union of cycles
{Ci;Ci 6= C} has ℓ copies of each edge in C \M i, ℓ− 1 copies of each edge in M i and
one copy of each edge in M ′. Therefore, the sum of weights of such cycles is at most
ℓ times the sum of weights in C and therefore negative. Then there must exist some
cycle Ci 6= C of negative weight, contradicting that C has minimal number of edges
among all negative cycles.

The previous discussion suggests an algorithm that strictly improves an alloca-
tion, but doesn’t guaranteed polynomial runtime. A careful choice of cycles following
the approach suggested by Zimmermann [28] for the submodular flow problem, is
enough to make the algorithm run in strongly polynomial time. We say that a cycle
is of minimum mean weight if the total weight divided by the number of edges in the
cycle is minimizes. Such cycle can be found in polynomial time using an algorithm
by Megiddo [19].

Theorem 10.3 (Murota [22]). The algorithm that finds a minimum weight mean
cycle with minimum number of edges among such cycles (Algorithm 4) is a strongly
polynomial time algorithm for the gross substitute welfare problem.

Algorithm 4 Minimum mean weight cycle cancelling

Input: gross substitute valuations v1, . . . , vm : 2[n] → R+

Initialize with an arbitrary partition S1, . . . , Sm of [n]
Define G implicitly as the graph in Lemma 9.2
while G has negative weight cycles

find a minimum mean weight cycle C with minimal number of edges
let Ai = {a; (a, b) ∈ C, a ∈ Si} and Bi = {b; (a, b) ∈ C, a ∈ Si}
update Si = Si ∪Bi \Ai for all i.

REFERENCES

19

[1] L. Ausubel and P. Milgrom. Ascending auctions with package bidding. Frontiers of Theoretical

Economics, 1(1), 2002.
[2] D. P. Bertsekas. The auction algorithm: a distributed relaxation method for the assignment

problem. Ann. Oper. Res., 14(1-4):105–123, June 1988.
[3] S. Bikhchandani and J. W. Mamer. Competitive equilibrium in an exchange economy with

indivisibilities. Journal of Economic Theory, 74(2):385–413, June 1997.
[4] M. Bing, D. J. Lehmann, and P. Milgrom. Presentation and structure of substitutes valuations.

In ACM Conference on Electronic Commerce, pages 238–239, 2004.
[5] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Journal of Political Economy,

94(4):863–72, August 1986.
[6] A. Dress and W. Terhalle. Rewarding maps: On greedy optimization of set functions. Advances

in Applied Mathematics, 16(4):464 – 483, 1995.
[7] A. Dress and W. Terhalle. Well-layered mapsa class of greedily optimizable set functions.

Applied Mathematics Letters, 8(5):77 – 80, 1995.
[8] A. W. Dress and W. Wenzel. Valuated matroids: a new look at the greedy algorithm. Applied

Mathematics Letters, 3(2):33 – 35, 1990.
[9] S. Fujishige. A primal approach to the independent assignment problem. Journal of the

Operations Research Society of Japan, 20(1):1–15, mar 1977.
[10] S. Fujishige and Z. Yang. A note on kelso and crawford’s gross substitutes condition. Math.

Oper. Res., 28(3):463–469, July 2003.
[11] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Economic

Theory, 87(1):95–124, July 1999.
[12] F. Gul and E. Stacchetti. The english auction with differentiated commodities. Journal of

Economic Theory, 92(1):66–95, May 2000.

[13] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[14] J. Kelso, Alexander S and V. P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, November 1982.

[15] B. Korte, L. Lovász, and R. Schrader. Greedoids. Algorithms and Combinatorics. Springer-
Verlag, 1991.

[16] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics

Quarterly, 2(1–2):83–97, March 1955.
[17] E. Lawler. Combinatorial optimization: networks and matroids. Dover Books on Mathematics

Series. Dover Publications, Incorporated, 1976.
[18] B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal

utilities. Games and Economic Behavior, 55(2):270–296, 2006.
[19] N. Megiddo. Combinatorial optimization with rational objective functions. In STOC, pages

1–12, 1978.
[20] K. Murota. Convexity and steinitz’s exchange property. Advances in Mathematics, 124(2):272

– 311, 1996.
[21] K. Murota. Valuated matroid intersection i: Optimality criteria. SIAM J. Discrete Math.,

9(4):545–561, 1996.
[22] K. Murota. Valuated matroid intersection ii: Algorithms. SIAM J. Discrete Math., 9(4):562–

576, 1996.
[23] K. Murota and A. Shioura. M-convex function on generalized polymatroid. Mathematics of

Operations Research, 24(1):pp. 95–105, 1999.
[24] N. Nisan and I. Segal. The communication requirements of efficient allocations and supporting

prices. J. Economic Theory, 129(1):192–224, 2006.
[25] J. Oxley. Matroid theory. Oxford Graduate Texts in Mathematics Series. Oxford University

Press, Incorporated, 1992.
[26] H. Reijnierse, A. v. Gellekom, and J. A. M. Potters. Verifying gross substitutability. Economic

Theory, 20(4):pp. 767–776, 2002.
[27] L. Walras. Elements of Pure Economics: Or the Theory of Social Wealth. Elements of Pure

Economics, Or the Theory of Social Wealth. Taylor & Francis, 2003.
[28] U. Zimmermann. Negative circuits for flows and submodular flows. Discrete Applied Mathe-

matics, 36(2):179–189, 1992.

20

